
HD-flföV 885

UNCLASSIFIED

MICROCOMPUTER APPLICATIONS WITH PC LAN (LOCAL AREA f72~
NETWORK) IN BATTLESHIPSi'U) NAVAL POSTGRADUATE SCHOOL
MONTEREV CA N GULESEN DEC 88

F/G 12/5 NL

m fW.t 8* >?y

m
oo
oo

NAVAL POSTGRADUATE SCHOOL
Monterey, California

eg
<

I
Q
<

OTIC
-v -_L£CTE

-0 7 MAR 1989

4 A •$&

MICROCOMPUTER APPLICATIONS
WITH

PC LANS
IN BATTLESHIPS

by

NEVZAT GULESEN

December 1988

Thesis Advisor: Prof. U. Kodres

Approved for public release; distribution unlimited

89 3 07 018

Unclassified
securttv classin« ol this page

REPORT DOCUMENTATION PAGE
Report Security Classification Unclassified lb Restrictive Markings

2a Securitv Class:;' Author:!»

I-.' Declassificatior. Downgrading Schedule

3 Distribution Availability of Report
Approved lor public release: distribution is unlimited.

- Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

?a Name of Performing Organization
Naval Postgraduate School

6b Ofhce Symbol
(if applicable' 33

7a Name of Monitoring Organization
Naval Posteraduate School

nc Address i ein, state, and ZIP code'

Monterev. CA 93943-5000
7b Address i dry, state, and ZIP code)
Monterey. CA 93943-5000

8a Name of Funding Sponsoring Organization 8b Office Symbol
(if applicable)

9 Procurement Instrument Identification Number

Sc Address i city, state, and ZIP code) 10 Source of Funding Numbers

Program F.lement No Project No Task No Work I nit Accession N

ii Title ([»elude security classification) MICROCOMPUTER APPLICATIONS WITH PC LAN IN BATTLESHIPS

12 Personal Authorise Nevzat Gulesen

13a Type of Rep.>rt
Master's Thesis

13b Time Covered
From To

14 Date of Report iyear, month, day/

December 1988
1? Page Count
164

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the I'.S. Government

Cosat: Codes

F.eld Group subgroup

18 Subject Terms i continue or. reverse if necessary and identify by block number;

LAN. CIC. Damage Control

Abstr continue en reverse if necessary and identify by ck number i
> This thesis explores the hardware requirements of a local area network and then constructs a multiuser software library

package for Turkish Battleships. The software implementation is designed as an expandable package so that future require-
ments can be met. The software package consists of three major parts. These are Personnel Evaluations. Combat Information
Center and Damage Control. Listings of the programs developed are presented, as well as instructions for their effective use.

It is concluded that a PC Local Area Network with the proper library programs is feasible for Turkish Battle Ships'
computing requirements. t- , .

/.'- 1) -
.

2'J Distribution Availability of Abstract
S unclassified unlimited d same as report D DT1C user

22a Name of Responsible Individual
Prof. I no Kodres

21 Abstract Secu,nv Classification
Unclassified

22b Telephone (include Area code;
(408) 646-2197

22c Office Svmbol
52Kr

•DD FORM 14-5.84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

security classification of this page

I'nclassified

Approved for public release; distribution is unlimited.

Microcomputer Applications with PC LAN in Battleships

by

Nevzat Gulesen
Lieutenant J.G. Turkish Navy

B.S., Turkish Naval Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author:
Nevzat Gulesen

Approved by: CCUo th • A djju^>
Prof. Uno Kodres, Thesis Advisor

Ben V. Mortagv, Second Reader

Prof. Robert B. McGhee. Chairman,
Department of Computer Science

\L.TM
Kneale T. Marshall

Information and Policy

ABSTRACT

This thesis explores the hardware requirements of a local area network and then

constructs a multiuser software library package for Turkish Battleships. The software

implementation is designed as an expandable package so that future requirements can

be met. The software package consists of three major parts. These are Personnel Eval-

uations, Combat Information Center and Damage Control. Listings of the programs

developed are presented, as well as instructions for their effective use.

It is concluded that a PC Local Area Network with the proper library programs is

feasible for Turkish Battle Ships' computing requirements.

in

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every of effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they can not be considered validated. Any application of these programs without

additional verification is at the risk of the user.

Some terms used in this research are registered trademarks of commercial products.

Rather than attempt to cite a trademark, all trademarks appearing in this thesis are listed

below, following the firm holding the trademark :

1. International Business Machines Corporation
IBM
IBM PC AT

2. Microsoft Corporation
MS-DOS

3. Intel Corporation
Intel iAPx S0S6. 801S6. S0286, S03S6, S0387

4. Ashton Täte
DataBase III +

5. Borland International
Turbo Pascal 4.0
Turbo Pascal 5.0

6. WordPerfect Corporation
WordPerfect

IV

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. DEFINITION OF THE PROBLEM 1

C. RECOMMENDED SOLUTION 2

D. STRUCTURE 3

II. INTRODUCTION TO LAN 4

A. DEFINITION 4

1. Peripheral and Information Sharing 4

2. Characteristics of PC Network 4

3. Major Advantages of the Local Area Network 5

B. EVALUATION OF LOCAL AREA NETWORKS 5

C. TRANSMISSION TECHNIQUES 6

D. MEDIUM ACCESS CONTROL METHODS 6

1. CSMA CD 6

2. Control Token 7

3. Slotted Ring 7

E. NETWORK CONFIGURATION 7

1. Memory and Disk Requirements 8

2. Operating System S

3. Users 8

4. Transmission Medium 9

F. IMPLEMENTATION 9

G. INTEL 80386 MICROPROCESSOR ARCHITECTURE 9

1. Cache Strategy 10

2. Memory Management 10

3. Multitasking 11

4. Software Compatibility 11

5. Performance and Conclusion 11

H. LOCATION IN THE SHIP 11

III. THE SOFTWARE IMPLEMENTATION 14

A. DEFINITION OF THE PROBLEM 14

B. RECOMMENDED SOLUTION 14

C. GENERAL CHARACTERISTICS OF i i IE PACKAGE 14

1. Language and Software Compatibility 14

2. Hardware Compatibility 15

3. Math-coprocessor 16

4. Implementation 16

D. STATISTICAL ANALYSIS 17

IV. USER MANUAL 19

A. GETTING STARTED WITH TCG. MF. CAKMAK 19

B. COMBAT INFORMATION CENTER 20

C. PERSONNEL EVALUATIONS 26

D. DAMAGE CONTROL 28

1. General Ship Information 28

2. Draft Diagram and Functions 28

3. Tank Diagrams 2S

4. Fire Fighting Exercise 28

5. Liquid Loading Diagram 29

6. Exit 30

E. SOURCE CODE 31

V. CONCLUSIONS AND RECOMMENDATIONS 151

A. CONCLUSIONS 151

B. RECOMMENDATIONS AND FUTURE IMPLEMENTATIONS 152

REFERENCES 153

INITIAL DISTRIBUTION LIST 154

VI

Figure 1.

Figure 2,

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Fieure 7.

LIST OF FIGURES

PC Locations in the Battleship 12

Menu Options in TCG. MF. Cakmak 20

CIC Data Entry Form 2!

A Sample Radar Screen and Solution 23

CIC Data Entry Table for Pivotship Solution 24

Finite State Automata Model for CIC States 25

Personnel Evaluations Data Entry Form 27

vu

ACKNOWLEDGEMENTS

Many people have contributed to the completion of this thesis. 1 would like to thank

the following people:

Prof. Uno Kodres, Thesis Advisor, Computer Science Department.

Mr. Ben Mortagy, Adjunct Instructor, Administrative Science Department.

Lt.J.G Cengiz Sengel, Former CIC Officer, Turkish Navy.

Lt.J.G Sukru Korlu, Former CIC Officer, Turkish Navy.

Lt.J.G Mumtaz Tune, Former F\V Officer, Turkish Navy.

Capt. Rod Scott, Canadian Air Force.

Lt. Martin Buker. L'SN.

Mrs. Jackie Kite.

Mrs. Emine Gulesen.

vui

I. INTRODUCTION

A. BACKGROUND

In the recent years, the use of the computers for military purposes has grown rap-

idly, because they can do the computations better, faster and more accurate than human

beings. As the time scale of hypothetichal battle shrinks, it becomes more clear that the

traditional modes of battle planning and management are no longer practical. Many of

these problems, like accuracy, less response time, information exchanging and commu-

nication have been solved in military applications as the computer technology advances.

On the other hand, these advances in computer technology result in increases in

cost. The budgets of many countries have been suffering from the overload of military

expenses. The same problem has affected Turkey as well. Most of the Turkish destroyers

were made in the United States during and right after the Second World War. In order

to increase the effectivity and the functionality of these battleships, Turkey has been

upgrading and modernizing the equipment located in these ships as well as buying and

building new battleships. Introducing the digital computers to the battle ships is both a

requirement and a part of these upgrading and modernization efforts.

B. DEFINITION OF THE PROBLEM

In increasing the effectivity and the functionality of Turkish battle ships, introducing

digital computers will be one of the most important steps to take. Many of the ships

duties can be easily handled by digital computers: faster, better, and more accurately.

Introducing the digital computers will bring attention to three major considerations

though:

1. A multiuser computing environment,

2. Military oriented proper application software libraries,

3. Cost effectivity.

The battle ships will require a multiuser computing environment, because ship duties

are multifunctional. There will be many users working at a time. There is a number of

multiuser computer systems available on the market, but most of them have huge hard-

ware units which makes them hard to install into the battleships. The lack of space in

the battleships, is a consideration. Most of the multiuser computing systems also require

special airconditioning. In case of damage of any hardware unit or airconditioning unit

under war conditions, the entire system may not function very well.

One of the important aspects of the multiuser computer systems, is that they are too

expensive to afford for each battle ship in the navy. Optimizing the cost of the comput-

ing requirements has been quite a big problem to solve.

Having a cost effective, very advanced type of multiuser computing system would

not solve all the computing problems of Turkish Battleships.

The most important requirement is that of military oriented software, because the

hardware units can be designed by the civilian companies, but military software can

barely be implemented by civilian companies. The military oriented software generally

includes confidential data and programs. This important restriction forces military as-

sociations to implement their own software requirement as well as using the civilian

software. No matter how great, or how cost effective the multiuser systems we have in

our battleships, the most important requirement would be the proper, military oriented

application software library packages.

C. RECOMMENDED SOLUTION

A Local Area Network (LAN) consisting of a number of advanced type personal

computers is one solution to both multiuser environment and a cost elimination prob-

lem. A LAN is a number of personal computers linked together, so that they can ex-

change information and share resources. In particular, they can share disk storage, data

and peripheral devices like printers. The network permits data and programs to be

transferred easily. A LAN with eight Intel 80386 microprocessor based computers will

greatly increase the Turkish BattleShips' functions in speed and accuracy while adding

the power of the digital computers.

In this thesis, we have implemented the most important three major application

software packages for Turkish Battleships. These are:

1. Combat Information Center,

2. Personnel Evaluations,

3. Damage Control Center.

The lack of the military oriented application software problem, can be solved by con-

tinually implementing them. The computer users are not computer specialists, nor pro-

grammers on the battle ships. The implementation of the application software packages

will increase the efficiency and the functionality of the battle ships.

D. STRUCTURE

Chapter 2 describes and explores the hardware requirements of a local area network.

It also explains the major hardware characteristics of Intel 80386 microprocessor.

Chapter 3 defines and discusses the military' oriented software problem and recommends

a solution. Evaluation and the statistical analysis of the software package created for

Turkish battle ships are also presented in the Chapter 3. Chapter 4 provides the user

manual and the source code. Recommendations, conclusions and future implementa-

tions are presented in Chapter 5.
1
i

II. INTRODUCTION TO LAN

This chapter will first introduce the LAN and its hardware requirements and then

it will present the major features of Intel 80386 micropressor. At the end of the chapter,

a network model for Turkish Battleships is presented.

A. DEFINITION

A Local Area Network is a number of personal computers linked together so that

they can share resources and exchange information. A LAN is called local area network

because the physical link between computers is limited. The users of the network can

continue to work on their respective computers independently. This is the main dis-

tinction between a time-sharing computer system and a local area network. In a time-

sharing system, various users of the system can not do their own worK, every job

processed is under the control of time-sharing system.

1, Peripheral and Information Sharing

Network computers can share resources such as disk drives, files, programs,

printers and other peripherals. The devices are connected to the network indirectly. The

main elements of the network are computers that are linked directly to the network.

Peripheral and resource sharing is a very important concept in computer architecture

and operating system analysis. Historically. Banker's Algorithm, Dining Philosophers

algorithms have been provided to solve deadlock and other resource sharing problems.

Effective sharing of the resources and the peripherals will reduce the total and the mar-

ginal cost of the system.

Even with two computers, a network has advantages. The maximum number

of the computers that can be installed in a network depends on the so-called Network

Adapter Card and the capacity of the network connection cable. Today, the maximum

number of the computers in a local area network can be as many as 1000 within a radius

of a few miles. One important limitation is that of the number of computers which are

linked through the server. IBM recommends not to have more than 25 users connected

to a server. The number of users connected to a server may increase in future.

2. Characteristics of PC Network

Each PC must have a Network Adapter Card in it.

Each PC must run the PC Network program to manage its participation in the

network.

Each PC must have a cable to connect it to the network. The physical location

of the computer in the network is not really important. Each computer is introduced to

the network by its name [Ref. 1].

3. Major Advantages of the Local Area Network

1. Users can share the use of specialized equipment,

2. Programs and data can be stored as one master copy to be used by all the ur.rs
of the network. There is no need for each user to have an individual copy of the
commonly used programs. This saves a great amount of file space.

3. PCs get more power from sharing the resources. Individual PCs do not have to
have fixed disks in them. Data and programs can be stored only in the servers' fixed
disks. These programs, data and files can be retrieved as the network computers
want to run them.

4. Data can be transported easily among the network computers. Network allows
data to be transferred directly.

B. EVALUATION OF LOCAL AREA NETWORKS

The network should be able to run the programs properly. The network we are

modeling for the Turkish Battleships, should be able to run the program constructed and

presented in Chapter 4. The subject program as mentioned before, consists of three

major parts. The network must be capable to run even the future software implemen-

tations. Any IBM oriented software has to be run in the network environment without

causing any problem.

The network must be flexible to meet the changing and developing goals and the

functions of the Turkish Battleships. It should have the capability of easy updating and

modernizing features for the future advances in computer architectures and network

configurations.

System should be simple to decrease the hardware, software and user problems. The

users of the network are generally not computer professionals. Any hardware or software

problem occurring at sea or in an emergency situation, must be solved by the ship per-

sonnel.

The elements of the network, must be able to communicate with other network ele-

ments. That will require compatibility. As stated before, Turkish Battle Ships will be

employing strictly IBM products or their equivalents.

The above conditions can be reflected into the following parameters:

1. Data Transmission Rate is at least 1Mbps

2. Number of connected computers 7 + 1 Server

3. Low error rates 10-'°

4. Maximum node to node distance 120 meters. (Ship is about 119meters)

5. High system availability (over 95 %)

6. High System reliability

7. Intel S03S6 microprocessors

8. Intel S03S7 Math-coprocessors

9. Operating System DOS 3.30 to be upgraded later to allow the full power utilization
of the microprocessor.

C. TRANSMISSION TECHNIQUES

There are two transmission techniques, baseband and broadband. Baseband em-

ploy«; bandwidths with no more than 50 MHz and bandwidth is taken up by transmitting

signal. The bandwidth of the broadband is generally greater than baseband. It is gen-

erally the order of 300 Mhz and more. The aim of the broadband system is that it can

provide a Local Area Network with the capability of handling large numbers of devices

over up to 9-10 miles and earn" image, data and voice transmissions. The network model

in the Turkish Battleships will employ the broadband technique.

D. MEDIUM ACCESS CONTROL METHODS

The access method is one of the most important aspects of local area design. Only

one device can successfully transmit on a shared medium at one time. Three tecniques

are largely used in local area design.

1. CSMA/CD

Carrier Sense Multiple Access with Collision Detection is used with bus network

topologies. A station can transmit if the line is free; otherwise it must wait. The waiting

station should either back off for a specified time interval before listening again d keep

monitoring until the line is clear to send. Because of propagation delay, a station can

not be certain that no other station is transmitting. In this case, collision occurs, after

a collision if it is detected during the transmission, transmission stops immediately and

a brief jamming signal is transmitted to assure that all stations know that there has been

a collision. After transmitting that signal, a station waits a random amount of time and

then attempts to transmit. The advantage of CSMA/CD is simplicity and the disadvan-

tage is the large number of collisions under heavy communication loads [Ref. 2). This

medium access tecnique is feasible for Turkish Battleships, because it is simple and the

load at anv time will not be verv heaw.

2. Control Token

Control token is used with either bus or ring networks. The control token is

passed from one station to another. One station may only transmit when it is in

possesion of token. Control token is more complex and expensive technique than

CSMD CD at light loads and has better performance at heavier loads.

3. Slotted Ring

This method is used with a ring network. The ring is initialized to contain a fixed

number of binary digits by a special node in the ring. The stream of bits continuously

circulates around the ring. All slots are marked as full or empty. When a station wishes

to transmit a frame, it first waits until an empty slot is detected. It then marks the slot

as full and indicates the source and destination addresses. The main disadvantages are

special monitor nods is required and each slot can only carry a limited amount of useful

information. Under normal conditions multiple slots are required.

E. NETWORK CONFIGURATION

In our Turkish Battleships model there will be seven computers linked together and

a server. The IBM PC network program allows for one of four different types of con-

figurations for each work station. There are also three levels of user configuration and

one configuration for servers. The user configurations are messenger, receiver and redi-

rector. The server configuration allows the user to employ its fixed disk and printer.

The PC network will let the ship personel use some application programs such as Lotus

123. WordPerfect. Dbase III +, TCG. MF. Cakmak (presented in Chapter 4 with the

user manual and evaluation). Although, in our model each PC has a fixed disk they still

can use the programs in the server's fixed disk. The server allows us to employ the pro-

grams and other resources. One server may function as file server while it functions as

print server. The network file server software is usually stored on a harddisk drive con-

trolled by the file server. A file server should contain disk spaces that are accessible to

other PCs on the network. A print server has a printer or another printing device that

can be shared by any PC in the network.

Any file server on the file server's disk can be read and copied by any other PC in

the network. The file server also maintains the control of file access. Military applica-

tions may require more restrictions on which the files are to be accessed. The file server

may be a password operated one to ensure that only authorized personel can access

certain files. Print server allows the user to share the printer on the network. When a

printer is shared among users, they send their files to the print serving computer. Print

server saves these files in a spool file, and then transmits the file from the spool file to

printer's buffer. The queuing manager program is built into the PC network software.

1. Memory and Disk Requirements

In order to run network programs, a server should have at least 320 kbytes of

main memory (RAM) and at least one fixed disk. The fixed disk should be large enough

to hold all the system and application software. Generally a server runs on a 80286

microprocessor based IBM PC AT with at least 512 Kbytes of Random Access Memory.

The transfer rates to the fixed disk of the IBM PC'ATs are a lot faster than that of IBM

PC/XT. A server providing printer service, transfers data and files through a number of

buffers. The buffers are set by default at 16K bytes of memory, but it also can be set

upto 4SK bytes. In our model, as stated before we will have 80386 microprocessors

based computers as file and print servers. The clock can be upto 33 Mhz which is a lot

faster than a regular IBM PC AT working at 8 or 10 MHz. The Random Access Mem-

ory can be expandable to 16 Mbytes. Because of the Virtual Memory expansion, we can

start with 640 Kbytes of main memory which is the memory limit for DOS 3.30. How-

ever, the future software and operating systems will require expanding the memory to 4

to 5 Mbytes.

2. Operating System

A local area network consists of hardware such as cables, adapter card, com-

puters connected to the system, and the software. In this point, the distinction between

the application software and the system software becomes an important issue. Most of

the application programs will run on the local area network without giving any problem.

System software and its most important joint, the operating system should be capable

to meet the network's requirements. IBM introduced local area networks and the DOS

3.10 in 19S5. DOS 3.10 or any greater versions of the DOS is capable to run the local

area networks. The proposed operating system for Turkish Battleships is DOS 3.30

which will be upgraded to OS/2 and OS, 3 as required later.

3. Users

A user uses a server's disk, directory, printer or other resources. As stated earlier

each user configuration has different functions. A messenger can do everthing a server

can do, except share disks, directories and printers. The messenger must have at least

256 Kbytes of memory. The receiver configuration is more limited. The receiver needs

at most 192 Kbytes of main memory-. It is the basic network device type. The redirector

is the most limited one in capabilities. It needs 128K bytes of memory.

4. Transmission Medium

Coaxial cable (75 ohm) is used for the transmission. It allows high speed data

transmission rates and the error rate is very low.

F. IMPLEMENTATION
The hardware for the attachment of any PC to the local area network typically

consists of an adaptor card that is installed into the personal computer. It provides a

high speed interface to the PC's internal bus. In the broadband PC networks, the main

part is the frequency translator. The PCs communicate with each other by sending and

receving signals. This signal traffic is managed by the frequency translator. From the

translator, the cable is connected to the two way splitter. One branch from two way

splitter lead> to eight-way splitter. The PCs are connected to the eight way splitter. If

there is no more than eigth PCs in the network, just one eigth splitter will be enough.

In this case, we will not use the other branch of the two-way splitter. Our model will

not have more than eight PC. so one eight-way splitter will be good for our model. If

we had more than eight PCs, then we would also need multiple clusters.

In the configuration, there are two basic types of devices. These are servers and

non-servers. We will configure all non-servers as messengers. This will provide the better

features. In this type of configuration, the PCs can use server's file space, directory or

printer; they can receive and transmit messages.

G. INTEL S03S6 MICROPROCESSOR ARCHITECTURE

Intel 80386 microprocessor is designed to handle mainframe-size applications with

typical data structures, large integers and large number of programs. It can address 4

gigabytes of physical memory and supports virtual memory. The concept of virtual

memory was first pioneered by mainframe architectures [Ref. 3]. Virtual Memory allows

the use of programs and data structures larger than the actual physical memory. Its 64

terabyte virtual memory capacity lets the processor handle even the largest programs

and data structures. The processor's full 32 bit architecture provides a high degree of

parallelism and a fast local bus. The eight general purpose registers can be used as ac-

cumulators, for logical operators, or as addressing and data registers. Each register can

be used for 32 or 16 bit values, four of these registers can also be split into pairs of 8-bit

registers. There are six 16-bit segment registers to implement the memory segmentation.

If the 80387 Math-coprocessor is used, eight 80 bit floating point registers are available.

Operating system makes use of a number of registers and these are invisible to the ap-

plication programs.

The S03S6 provides object code compatibility with programs created for Intel's

iAPX processor family SOSS. S086. 80186, S01S8 and 802S6. The 80386s virtual 80S6

facilities let MS-DOS based S0S6 programs run concurrently with programs written for

32-bit operating systems, with each program operating as a separate task in a protected

multitasking form.

A complete set of instructions, implements the processing of data types. The in-

struction set is a superset of 80S6 and 80286 instructions. Instructions average 3.1 bytes

in length and require 4.4 clock cycles for execution when measured in . 'ypical applica-

tion set. One of the most important features is that 80386 is partitioned into a six-stage

pipelined architecture. Each of these units can work independently and in parallel with

the others. This also enables the chip to overlap execution of multiple instructions. The

paging and segmentation units are the part of the pipeline as well. Together, they build

up the processor's memory management unit (MMU). The 80386 local bus achieves an

overall throughput of 32 megabytes per second at 16 Mhz [Ref. 4].

1. Cache Strategy

The average sizes of the caches are about 32 Kbytes for off-chip caches. The

hit rates are in 90 to 99 percent range. The cache size looks very small for providing

significant benefits, but this size is optimized for 80386 off-chip caching. On-chip caches

have typically hit rates of only 20 to 30 percent. Dynamic bus sizing allows transfers of

16 or 32 bit data. The processor can change the dynamic bus size during the execution

and the result is completely transparent to the application programmer.

2. Memory Management

Virtual memory defines a logical address space that can exceed the physical ad-

dress space. Logical addresses pass through translation hardware to yield the physical

address. The large logical address space is subdivided into units of allocation, segments

or pages. Segments and pages can be swapped into and out of main memory from sec-

ondary storage devices. This swapping into and out of the main memory process is also

transparent to the application programmer. The 80386 makes use of both paging and

segmentation schemes taking advantages of both strategies. In segmentation, logical

memory is subdivided into segments of variable length. Segments in 80386 can be any

size up to 4 gigabytes. In the segmentation process, address translation is managed by

descriptor table and page-table entries. This architectural design is very common in all

Virtual Memory implementations. Almost all virtual memory managements are strictly

based on the dynamic address translation from logical address to physical address space.

Paging is a little bit different than segmentation in 80386. Pages are small blocks of fixed

10

size. The 803S6 page lenghts are 4K bytes. Paging simplifies the swapping algorithm by

providing uniform units of allocation. Paging is used to manage the physical memory.

The 80386 has combined the use of segmentation and paging. This feature

makes the address translation very fast.

3. Multitasking

The 80386 was designed for high throughput multitasking. Each task sees only

it's own execution context and is unaware of other tasks running concurrently.

4. Software Compatibility

The 80386 supplies binary code compatibility with all previous 8086 family

software applications. We can port operating systems and programming tools directly

to the 80386 without recompilation or assembly. For 8086 programs, the processor

provides virtual 80S6 mode, which establishes a task-selectable protected 8086 environ-

ment within the multitasking framework. In this environment, tasks can take advantage

of the S03S6's protection and paging mechanisms, while running the non-privileged S086

instructions directly at roughly 16 times the speed of an 8086.

5. Performance and Conclusion

The on-chip Memory Management Unit, a fast local bus, pipelining and the

processor's compact code contribute to a fast throughput. Recent benchmark tests set

the 80386's performance at 3.64 MIPS, averaged over 14 applications and 31 million

instructions. The chip's interrupt response has been clocked at 3.7 microseconds from

event to first handler instruction. The 803S6's performance can also be increased with

an S0387 coprocessor.

The tests have proved that the performance of the S0386 is compatible with

many mainframe type computer. Multitasking, paging and segmentation, software and

hardware compatibility, speed and pipelined architectures are very much satisfying.

These extended features and affordable price difference between Intel 80286 and S03S6

has encouraged us to employ 80386 microprocessors in the proposed Turkish Battleships

model.

H. LOCATION IN THE SHIP
We will have seven PCs and a server on the ship. The PCs will be located in the

following locations as shown in Figure 1.

11

DAMAGE

CONTROL
OFFICE

BRIDGE SERVER

WEAPON/

FIRE

CONTROL

ENGINE

OFFICE

COMBAT

INFO

CENTER

SUPPLY

OFFICE

SHIP

OFFICE

Figure 1. PC Locations in the Battleship.

1. Damage Control Office,

2. Engine Office,

3. Weapon ' Fire Control Room.

4. Supply Office,

12

J

5. Ship Office,

6. Bridge.

7. Combat Information Center.

The server can be located to the Ship Office. We will also have additional monitors on

the bridge and Commanding Officer Office. This will let the Commanding Officer or the

Navigation Duty Officer see the radar screen and Combat Information Center solutions

at the same time. If any ship department needs a PC, our server can still support the

system. The ship's office should also have a modem in its PC to communicate with

headquarters. We will support the system with two printers. One of them will be laser

printer, and the other one is a dot matrix printer. They both will be installed in the ship's

office. The dot matrix printers are quite fast and inexpensive. They can be used for reg-

ular type applications in the ship. They can be used for regular type applications in the

ship.

13

III. THE SOFTWARE IMPLEMENTATION

This Chapter states the lack of military software problem and then recommends a

solution. It also evaluates and statistical}" analyses the software package created for

Turkish Battleships.

A. DEFINITION OF THE PROBLEM

Software has a large and increasing effect. Its cost has been increasing as well. This

increasing effect and cost directly reflect the military applications. Because of the secu-

rity aspect and the special goals of the military applications, it is even harder to imple-

ment than the civilian software. In some cases, military applications may include or use

the civilian software. Thus, in terms of layers, military software can be defined as the

superset of the civilian software. Generating military oriented software may require very

hard steps, reaching the so-called "gold standards" of data and programs may not even

be possible. The fact is that there is a great need of software in military applications at

present.

B. RECOMMENDED SOLUTION

The software package TCG. MF. Cakmak is designed to meet the most important

software requirements of Turkish Battleships. It mainly concentrates on three major ship

applications. These are:

1. Combat Information Center,

2. Personnel Evaluations,

3. Damage Control.

The fact is that the package MF. Cakmak is an initial step to create a navy oriented

software for Turkish Battleships and it will not meet all the software requirements of

those ships. In the near future, we can meet these software requirements by implement-

ing them.

C. GENERAL CHARACTERISTICS OF THE PACKAGE

1. Language and Software Compatibility

In the implementation of the package, Turbo Pascal 4.0 was employed. It al-

lowed us to use effective graphic routines and as well as screen text mode and disk op-

erating system library routines. The compiler also provided all well known abstract data

14

structures. We could obtain *.tpu (Turbo Pascal Unit) files by writing our own library

routines. The main program could combine all *.tpu files and create an executable file

with .exe extention. The Turbo Pascal IV.O has all the features we would expect from a

fourth generation high level language.

In spring 1988. Borland International built up Turbo Pascal 5.0. Turbo Pascal

40 and Turbo Pascal 5.0 are compatible, that is the next software requirements that can

be implemented in Turbo Pascal 5.0. In terms of the compatibity, the language used to

implement the future requirements will not make any difference as long as the compiler

generates an executable code. Thus, using Ada, C, Modula-2, Turbo Pascal and even

Basic does not make difference.

2. Hardware Compatibility

The TCG. MF. Cakmak will run on any IBM or compatible computer system.

The package was originally designed on an IBM compatible computer working with

Intel iAPx S02S6 microprocessor at S MHz. In order to provide the best interface with

the user, I have forced the program to run slower with I O interrupts and operating

system delays. The program will work approximately two times slower on a S0S6 or 80SS

based computer. In Turkish Battleships, the program will be working on S03S6 micro-

processors, three times faster than it does on a regular IBM PC AT. The 10 interrupts

and the operating system delays will still assure the proper user interface. For example,

the radar sweeps will be faster on S03S6 based computer.

The excess usage of the graphics routines, brings up the graphics compatability

problem. The original package was designed on monochrome monitor with Hercules

graphics adapter. It has been very common to use monochrome monitors in military

applications. The main reason behind this, is that of the health conditions of the battle

ship computer operators. A department chief or the Commanding Officer may ask a

computer operator to stand by or process data for a very long time without taking break

under emergency conditions. The monochrome monitors also provides a better resol-

ution which is one of the most important factor in graphically oriented software pack-

ages. With its 720 x 348 resolution, we could obtain pictures on 250560 pixel graphic

array. On the other hand, we wanted see our pictures on a EGA oriented screen with

better colors. Generating proper formulas and aspect ratio relations allowed us to run

our programs on EGA monitors with 640 x 350 resolution and 224000 pixel graphic ar-

ray. The monochrome version of TCG. MF. Cakmak is called version 1.0 and the EGA

version is called version 1.1. This thesis presents the version 1.0 at the end of Chapter

4. The size of the some files are a little bit larger in version 1.1 because of managing color

15

graphics. As we stated before, the version 1.0 will be employed in Turkish Battleships.

The version 1.1 can be used in Naval Academy and in other educational centers for

training purposes. Two different versions will be treated as install options.

3. Math-coprocessor

The package does not require math-coprocessor 8087, 80187, 80287 and S0387

on the respective computers. Having a math-coprocessor will speed up the execution

though.

4. Implementation

The TCG MF. Cakmak is a software package, implemented to be used in

Turkish Battleships stand alone and local area network computer systems. Although, it

does not meet all the software requirements of the Turkish Battleships, it does solve the

problem that is called lack of military application software. It mainly concentrates on

the major navigational, scientific-calculational and administrative applications. These

are CIC (Combat Information Center), Personel Evaluations and DC (Damage Con-

trol).

The main function of the CIC department in a battleship, is to get information

and determine about the targets' movements. A target does not have to be an enemy

surface ship, aircraft or submarine. Even a friendly navigating fishing boat is a target for

CIC. Thus, CIC is responsible for getting and processing all the data about targets. This

responsibility also assures the safety of the navigational traffic at sea. The other impor-

tant function of the CIC is to suggest the best speed and course combination to the

navigation duty officer or commanding officer. This function becomes very important

expecially in national and international exercices when one pivot ship is directing all

others. Without using computers, CIC problems may sometimes be very difficult and

time consuming. The worst is that the problems may not be solved correctly under war

or exercise conditions, because of the overtired CIC personnel. Experience has shown

that almost all navigation duty officers have been witness to a wrongly solved CIC

problem. Wrong CIC solutions, even in peace conditions, may cause the loss of life and

other values. The CIC part of the TCG. MF. Cakmak does correctly solve both type

of CIC solutions a lot faster than the traditional CIC methods do. It is also a real time

application. The computer aided CIC implementation can track 30 targets at a time.

The CIC in the ship never processes data concerning more than five targets at a time.

The second part of the package is personnel evaluations. The reason we imple-

mented it is that the personnel evaluations in the navy has not been very effective and

we wanted to improve the present methods. The evaluations are done by department

16

heads once a year. The Personnel Evaluations implementation allows a department head

to evaluate the people working under his command more than once a year and easily.

This also prevents the evaluation of people under physicological pressure at that specific

time. This part of the code has also been a real time application.

The Damage Control is a very important function in a battleship both in peace

time and war conditions. The damage control branch, is a subdivision of the engineering

department in battleships. Damage control personnel under the command of the damage

control officer is responsible for the ship stability, fire fighting, nuclear, biological and

chemistry warship readiness, providing of watertightness of the ship, and every kind of

engineering application. The branch is also responsible for the maintanence of the

fuel-oil. diesel-oil, feed and potable water tanks. As a former Damage Control Officer.

I implemented seven different functions in the damage control part. It will allow damage

control officers and assistants to work more efficiently.

D. STATISTICAL ANALYSIS

As software systems gets larger, reliability requirement gets more stringent. A sta-

tistical method can be used to explain this fact. A conventionally designed software

system fails when one of its module fails [Ref. 5]. Let us define:

X: The number of modules in a software system.

P: The probability that a typical module is free from faults.

Ps : The probability that the entire system is free from faults.

1 - P : The probabily that a typical module has a fault.

Q = 1 - P.

P* = (I — 0* = 1 - X.Q + higher order terms using a binomial expansion:

Ps = 1 - X.Q.

1 - Px = N.Q the probability the entire system has a fault.

In Our TCG. MF. Cakmak implementation, there are 20 modules. Even if each

module were 99 percent error free, the reliability of the total system would be 81.2 per-

cent which may not be allowed in a military- application. The same approach can be used

to analyse each module's reliability, because each module consists of a number of pro-

cedures and functions. The largest module, in TCG. MF. Cakmak implementation is

Combat Information Center (CIC). The CIC has a total of 43 procedures and functions.

If each procedure and function were 99 percent error free, than the reliabiliy of the CIC

would be 64.9 percent. We could never run CIC program in our ships with this reliability

17

percentage, otherwise we would have to give up thousands of dollars a battle ship and

hundreds of people.

The TCG. MF. Cakmak has worked properly in testings. The problems may be

caused by user faults (i.e. entering wrong data) and these faults can be best prevented

by special short term courses.

The C1C program solves both type of problems 100 percent correctly as long as the

data entry is correct. The TCG. MF. Cakmak has 20 modules, additionally it uses four

library routines. These are Graph.doc, Crt.doc, Dos.doc and Hercules.bgi (or Egavga.bgi

on EGA oriented monitors). The total source code is 131 K bytes and the generated

executable code is 105 Kbytes. The program consists of 4310 lines of code.

18

IV. USER MANUAL

This chapter provides the user manual for the effective use of the software package.

At the end of the chapter we presented the source code.

A. GETTING STARTED WITH TCG. MF. CAKMAK

The sign on is password operated. In order to be able to log on, the users must have

an identification number and a password. After running the executable code the pro-

gram draws a ship picture and writes the name of the ship giving the message "Press

Enter co Continue". If no one is using the program, this picture will stay on the screen.

If the user hits the carriage return at this initial screen mode, the program next asks

the user to enter the identification number followed by the password. If identification

number is already not an acceptable one. then the password entry will never be asked.

In this case, the program will display the message "User Authorization Failure ". One

failure in password or identification number entries, causes the program to ask these two

entries two times. This prevents any coincident password break and logging on to the

system.

After logging on. the program will ask the user what he she wants to do. As stated

before, the program displays three options at this stage. These are:

1. Combat Information Center.

2. Personnel Evaluations.

3. Damage Control Center.

TCG. MF. Cakmak menu options are shown in Figure 2. The user can enter his her

option by pressing the related number. An unrelated entry at this moment will cause the

program to give the following message:

" Invalid entry, the feature not implemented yet "

" Do you want to quit TCG. M.F. Cakmak ?"

An entry of "y" or "Y" will let the user to get out the program environment. If the

user enters option "1", the program will call the CIC program and run it.

19

MENU

1. COMBAT INFORMATION CENTER

2. PERSONEL EVALUATIONS

3. DAMAGE CONTROL CENTER

Figure 2. Menu Options in TCG. MF. Cakmak.

B. COMBAT INFORMATION CENTER

The CIC program first draws the CIC data entry table on the screen, in text mode.

The screen and the table is shown in Figure 3. The program gets the time and date in-

formation from the operating system and displays it in the CIC entry table. If the user

starts solving any kind of CIC problem, he, she should first hit the carriage return, this

will take the take cursor from the time cell down to OwnShip PivotShip cell. The users

acceptable entries can be:

1. o, O or carriage return for ownship type calculations,

2. p or P for pivotship type calculations,

3. q or Q for quitting the program.

20

COMBAT INFO CENTER

OWN SHIP DATA TARGET SHIP DATA

TCG.M.CAKMAK STATUS .A.
RELATIVE

BEARING

TODAY MON. 7/25/1988 RANGE

CURRENT TIME 11:55:18:78 AT TIME

SPEED 12 Knots
RELATTVE

BEARING

COURSE 120° RANGE
OWNSHIP/

PIVOT 0 AT TIME
CHANGE

FUNCTION TARGET SPEED

MORE SHIPS TARGET COURSE

TARGET TRACK. CPA

Figure 3. CIC Data Entry Form.

If the user wants to do first type of (Ownship type calculations) then he/she enters

either o, or O, or the user can just hits the carriage return. This will initialize the pro-

gram. In this case the computer first enters the ownship data in ownship data cells

which are ownship speed and ownship course. When the radar operator is ready to

present the target ship data at time tl, the computer operator first hits the carriage re-

turn to move the cursor from time counting cell to the target ship data cells.

The data coming from the radar through radar operator is easily entered to respec-

tive cells in the table. After finishing data entry for any specific target, the computer will

remind the computer operator that it was the first target tracked.

21

In this stage, the cursor immediately moves to the MORE SHIPS cell. An entry of

y or the Y will let the user enter all targets data coming out from the radar and other

sensors. When the second positions of the targets are reported by the radar operator, the

computer operator will simultaneously enter these data as well. After entering the sec-

ondary positions of the targets, pressing the carriage return will solve the problem for

the first target. If there is more than one target, then the computer operator can enter

y or Y when the program asks whether the computer operator wants to see the respec-

tive target's true speed and course values.

During the solution and the exhibition of the CIC problem, if the closest point of

approach is less than 500 yards, then the computer will display sound and vision effects.

These are a flashing "Collision" message and a warning sound and signal. If the target

is moving faster than 100.000 yards hour (50 mph) then the computer will determine that

the target is probably an air target. Air target alarm will be displayed on the screen as

a flashing "AIR".

After solving the problem, the computer operator can solve another problem by

typing y in more ships cell. If the user wants to see the radar screen, he can type r when

the cursor flashing at change function cell. The radar screen is quite useful for the radar

operator, because it can display all the target information in true speed and true course

vectorial form. This implementation is more informative than an ordinary radar screen,

because even." spot seen on the radar screen is a function of ownship speed and course.

Thus, nothing on the radar screen is real, but all the information is relative. The com-

puter screen radar information with the real values of the targets' data can also be

transmitted to the monitor located in the Commanding Officer's room. This lets the CO

be able to see the tactical scene, if he is not even at the bridge. A sample radar screen

and solution is illustrated in Figure 4. Either CO or the computer operator, can get out

of the radar shell just by hitting the carriage return.

22

Figure 4. A Sample Radar Screen and Solution.

23

The pivot ship solution is quite similar to the one we explained in ownship target

tracking solutions. The difference is that the CIC entry table is changed. The CIC entry

table for pivot ship solution is shown in Figure 5.

COMBAT INFO CENTER

PIVOT SHIP DATA OWN SHIP DATA

TCG.M.CAKMAK STATUS .A.
RELATIVE

BEARING

TODAY MON. 7/25/1988 RANGE

CURRENT TIME 11:55:18:78 AT TIME

SPEED 12 Knots
RELATIVE

BEARING

COURSE 120° RANGE
OWNSHIP /

PIVOT P AT TIME

CHANGE
FUNCTION OWNSHIP SPEED

MORE SHIPS COURSE

TARGET TRACK. CPA

Figure 5. CIC Data Entry Table for Pivotship Solution.

The computer operator gets the pivot ship data from the radar operator or the pivot

ship itself reports its speed and course. Then the computer operator first enters the cur-

rent positions (range and relative bearing which are both relative to the pivot ship) and

then the position where the pivot or the commanding ship wanted us to get to. The op-

erator can also enter the time difference allowed to get to the specific position. Hitting

a carriage return will allow the user to see the solution of the problem.

24

This solution is immediately presented to the bridge and navigation duty officer.

The operator can go back to the radar screen or can quit the program. The operator can

even do an ownship target tracking solution if he wants to. The Fig. 6 shows the finite

state automata model of the possible states that the CIC program can have at any given

time. It also shows transitions between allowed states.

RUN

*? u
OWNSHIP PrVOTSHJP

r^f

PIVOTSHIP
RADAR

QUIT

Figure 6. Finite State Automata Model for CIC States.

The program takes the user out of the executing CIC shell, if the user enters the q

at the Change Function cell. When q entered, the program will display a "Thank You

For Usin2 CIC" messaae.

25

C. PERSONNEL EVALUATIONS

If the user wants to evaluate any person, he she can enter 2 in the main menu. The

TCG. MF. Cakmak program will ask the following questions to the user

Ql. Enter the last name of the person to be evaluated.

The user enters the last name of the person to be evaluated.

Q2. Enter the firstrame of the person to be evaluated.

The user enters the firstname of the person to be evaluated.

Q3. Enter the rank of the person to be evaluated.

The user enters the rank of the person to be evaluated.

The program then looks for the previous evaluation file and data for this specific

person to be evaluated. If the program finds the data in the secondary memory' device,

it loads this data into the main memory: if it can not find the data and the file, then asks

the following question.

"The file does not exist, do you want to create a file ?"

In order to evaluate anyone, the user has to create a file. An entry of V or 'Y' will

let the program create a file for the person to be evaluated. At this stage of the exe-

cution, the program draws the personnel evaluation table. The Figure 7 shows the gen-

eral structure of the personnel evaluation table. The user starts entering the grades in

respective cells. Each cell has to be filled out with some integer (or real) number repres-

enting the grade for this cell. After entering the last grade, the program calculates the

total and the average values, and writes in the date and the time when the grades were

assigned.

26

PERSONNEL EVALUATIONS

REALIBILITY 10 10 JOHNSON SAVE "S"

RESPONSIBILITY 10 10 GEORGE MODIFY 2XCR.

LEADERSHIP 9 9 LTJ.G. QUIT AZ

COMPREHENSmiLITY 10 9

STAMINA 9 10

PERSONALITY 10 10

GOOD MORAL 10 10 DATE 15_11.1988

PRODUCTIVITY 10 9 TIME 13:17:58

GENERAL BEHAVIOUR 10 10 TOTAL 97

PROFESSIONALITY 9 9 AVERAGE 9.70

Figure 7. Personnel Evaluations Data Entry Form.

The user then enters the lastname and a dot followed by the first three characters

of the person who has been evaluated. The data and file can be saved by hitting the s

or S. The entries can also be modified by bringing the cursor to the respective cell. The

user can easily get out of the personnel evaluations shell by simply typing the Cntl-Z.

The program asks :

"Do you want to evaluate another person ?". The user can enter y, Y, n or N. If

he/she does not want to evaluate another person then program asks

"Do you want to quit TCG. MF. Cakmak ?". An entry of y or Y will take the user

to the disk operating system environment.

27

D. DAMAGE CONTROL

The damage control program menus are wrap-around, pull-down menu type. Be-

cause of having more options, we thought this kind of menu would be easier to use for

the users of this program. In this part of the package, there are seven executable func-

tions and the last function (function eight) is the exit function. When selected, the

damage control program will present the following options to the user:

1. General Ship Information,

2. Draft Diagram and Functions,

3. Show Ballast Tanks,

4. Show Fuel Tanks,

5. Show Water Tanks,

6. Fire Fighting Exercise,

7. Liquid Loading Diagram,

8. Exit.

Any option can be selected by using Up and Down Arrows or entering the respective

number. For example an entry of'3' will cause the program to show the ballast tanks.

1. General Ship Information

This program draws the 17 watertight sections of the ship which are located

under the main deck. It also displays all the tecniqual information about the ship as well

as the selected frame numbers of some watertight compartments.

2. Draft Diagram and Functions.

The user enters the forward and the after draft marks of the ship into the re-

spective entry cells. The program calculates the displacement (in tons) and the

immersion (in tons inch) graphically. The program lets the damage control officer or

assistants figure out what the displacement and the immersion are at any time. The dis-

placement and the immersion are the major factors effecting the ship stability. The

carriage return will take the user back to the damage control menu.

3. Tank Diagrams

The TCG. MF. Cakmak program allows the damage control personnel to see

the ballast, fuel oil, diesel oil, feed water and potable water tanks of the ship. In order

to get back to the damage control menu, the user simply hits the carriage return.

4. Fire Fighting Exercise

This portion of the damage control implementation was designed to use both in

real fire and in fire exercices. The user enters the type of the fire. If the fire is 'A' class

28

fire (regular fire) then the user next enters the location of the fire. A location in the ship

can be defined in terms of deck number and the frame number. After entering the deck

and the frame numbers, the program displays the available closest fire stations for use.

It also flashes the message 'turn off the ventilation' and the responsible repair team for

extinguishing the fire. The program at the same time records the time spent to take the

fire under control while reminding the communication line 2JZ has to be activated. The

program, as stated before can be used in fire exercises as well to assign grades to each

of the repair teams. The time spent to control the fire is the score that the specific team

makes. The program is also designed for use in case of 'B' class fire (electrical fire). In

case of B class fire, it displays following flashing messages :

1. Do Not Use Water.

2. Use C02 or Dry Chemical Agents.

3. Communication Line is 2JZ.

4. Score.

The time spent to control the fire is again the score of that specific repair team. After

first use of this program, fire fighting implementation will require two more confirma-

tion, if any other damage control program has not been used after the fire fighting pro-

gram.

5. Liquid Loading Diagram

The liquid loading diagram gives information about any fuel oil, diesel oil.

ballast, feed or water tank. The information about any tank consists of following tech-

niqual data :

1. Capacity of the tank,

2. The effect to the forward draft,

3. The effect to the after draft,

4. The effect to the trim,

5. The location of the tank in terms of the frame numbers.

The user of the program can easily get all the information about any tank of

the ship. This allows the damage control duty assistants to arrange the 0 degree trim and

a good stability conditions. The entry to the program is just the name of the tank, but

in upper case letters. Because all tank names are described with upper case letters in the

navy. Otherwise, the program will give the message "No such tank, do you want to

29

continue ?". After getting all the information about the tank, the user can go back to the

damage control menu simply by hitting the carriage return.

6. Exit

This last function is used to leave the damage control program. When used. The

MF. Cakmak implementation will ask the following question:

"Do you want to quit the MF. Cakmak ?".

An entry of y or Y will take the user back to the disk operating system envi-

ronment.

30

E. SOURCE CODE

program M.F._CAKMAK;
I * « ft * «:;-. « ft «ft ft ft ft ft ft ft ft «ft *ftft >;-. ft ft ft ft ft «•. ft * ft ft * ft * ft ft ft ft ft ft ft ft ft * ft ft * * * * * * ft * ft ft ftftft * * ft * ft * * *

ftft ft >;-.ft* ftftft ft ft ft ft «ft * ft * ft ft * ft * * ft * ft ft ft ft ft ft ft ft ft ft * * * * * ft ft >'t ****** * * * * * * * * ft * * * * ft * * * ft *

TCG. MF.CAKMAK 1.0

TURBO PASCAL 4.0.

3.26.19S8
ft***

************************************«ft*******«.* ft****************.* *****1

uses Graph.Crt,Dos.Testgr.Tr>-2,UserAuth,Dra\vShip,outmenu.perfile.cic2,dmS;

label 50;

var

TestGrOk.Authorized.Boolean;

begin

50: InitGraph(GraphDriver,Graph.Mode,' A:drivers'); [** Initialize Graphics **]

[*•* Test whether proper graphics devices are already installed ***]

TestGrOk: = Test_Graph_Device(GraphDriver.ErrorCode,GraphVlode);

if TestGrOk then

begin

[If installed then go ahead]

Dra\v_Ship: [** Draws the Start_up Screen **]

Authorized: = User_Authorization(Users);

end;

while not Authorized do

begin

TestGrOk: = Test_Graph_Device(GraphDriver,ErrorCode,GraphM ode);

if TestGrOk then begin

Draw_Ship;

Screen_handler;

Authorized: = UserAuth.User_Authorization(Users);

end;

end;

CloseGraph;

31

Clrscr;

outmenu.out:

\vriteln{ DO YOU WANT TO QUIT M.F.CAKMAK . . ?');

Ch : = ReadKey;

if((Ch = #78)or(Ch = #110)) then

goto 50 ;

end.

32

unit DrawShip;
r* * * * * * * * *.-:: ****** * *

This Unit draws the ship picture on the screen.

The unit is called by the main program.
* * * * * * * * ********* * * **.•:-.**************«************* i

interface

uses Graph,Dos,Crt,Testgr;

Procedure Dra\v_Ship;

implementation

Procedure Draw_Ship;

const

ship: array (.1..5.) ofPointType = ((x:150;y:250),

(x:175;y:275),

(x:545;y:275),

(x:560;y:250),

(x:150;y:250));

[*** SUPERSTRUCTURE COORDINATES ***]

deck: array (.1..4.) ofPointType = ((x:225;y:250),

(x:250;y:225),

(x:450;y:225),
(x:450:y:250));

[**• MISSILE LAUNCHERS COORDINATES **'

launcher: array (.1..5.) ofPointType = ((x:470;y:210),

(x:490;y:210),

(x:510;y:250),

(x:490; y.250),

(x:470; y:210));

[*** FORWARD GUN COORDINATES ***}

gun : array (.1..5.) ofPointType = ((x:205;y:235),

(x:190;y:235),

(x:175;y:250),

33

(x:205;y:235));

[*** TARET COORDINATES ***]

taret: array (.1..5.) of PointType = ((x:182;y:243),

(x:184;y:241),

(x:165;y:235),

(x:163;y:237),

(x:182;y:243)),

radius = 10;

var

Yl:Integer;

begin
Rectangle(100,25t(GetMaxX-100),(GetMaxY-175));

SetTextJustify(CenterText,CenterText);

SetTextStyle(l.Horizdir.4);

YI: = GetMaxY-175;

OutTextXY((GetMaxX-100)div2 + 50,Yldiv2,'MARESAL FEVZI CAKMAK');

SetTextStyle(1 ,Horizdir,2);

OutTextXY(150.325,'Press Enter to continue...');

[**• DRAW THE SHIP ***]

Dra\vPoly(SizeOfi;Ship) div SizeOf(PointType),Ship);

FillPoly(SizeORShip) div SizeOflPointType),Ship);

DrawPoly(SizeORDeck) div SizeORPointType),Deck);

FillPoly(SizeOilDeck) div SizeOf|PointType),Deck);

Drawpoly(SizeOf(Launcher) div SizeOfl[PointType),Launcher);

FillPoly(10,Launcher);

Dra\vPoly(SizeO[\Gun) div SizeOfl;pointType),Gun);

Fil]Poly(3,Gun);

DrawPoly(SizeOf(Taret) div SizeOfl;PointType),Taret);

Arc(300,210,240,60,radius); [radar]

Line(307,216,307,250); [top radar waveguide]

Line(370,225,370,180); [forward radio antenna]

Line(465,250,465,190); [backward radio antenna]

Line(560,250,560,245); [aft prevent]

Line(520,250,520,245); [forward prevent]

Line(520,245,560,245);

34

Line(530,250.530,245);

Line(540,250,540.245);

Line(550,250.550.245);

Line(560,245,520.245):

Line(50,270,650,270);

Line(560,242,520,242);

Line(132,295,14S,295);

Line(458,319,477,319);

[SetTextStyle(2,Horizdir,l);

LowVideo;

OutTextXY(200,60,'351);]

readln;

end;

end.

35

J

unit outmenu:
t * * * * * * ******** * *************** * * * * * * /.: * * * * * * * * ****** * * * * « ********** * * * * 1

This is the main unit in TCG. MF. Cakmak. The module handles all the user options.

The module calls Cic2, dmS. and perfile modules respectively. The unit is called by the

TCG. MF. Cakmak.
r *****;******:*** **********]

interface

uses menu,Crt,perfile,cic2,dmS;

var L"ser_Choice : char;

procedure out;

implementation

procedure out;

begin

ClrScr;

menu.menu_\vindo\v(User_Choice);Clrscr;

\vindo\v(l,LS0,25);

if User_Choice = #50 then beginClrscr;

perfile.main;

clrscr;

end

else if User_Choice = #49 then begin

clrscr;

cic2.main;Clrscr;

end

else if User_Choice = #51 then begin

clrscr;

dmS.main;

end

else begin

clrscr;

writelnCINVALID CHOICE , NOT IMPLEMENTED YET ');

end;

end;

36

unit menu:

This module is called by the Turbo Pascal Unit outmenu. It is used

to draw a menu window and to display the menu options.

interface

uses Crt:

const

LeftCorner = #201;

HorzBar = #205;

RightCorner = £187;

VertBar = #186;

LowLeftCorner - #200;

LowRightCorner = #188;

XI = 20; VI = 5;

X2 = 60; Y2=21;

var i : integer:

procedure menu_window(var User_Choise : Char);

implementation

procedure menu_window(var User_Choise : char);

begin

Window(X 1 -1 ,Y 1 -1 ,X2 + 1 ,Y2 + 1);

ClrScr;

Window{l, 1,80,25);

gotoxy(Xl-l.Yl-l);

write(UpLeftCorner);

fori: = Xl to X2 do

Write(HorzBar);

write(UpRightCorner);

for i:= Yl to Y2 do begin

gotoxy(X I -1 ,i);write(VertBar);

gotoxy(X2 + 1 ,i);write(Vertbar);

end;

gotoxy(Xl-l,Y2+l);

write(LowLeftCorner);

37

for i: = XI to X2 do

write(HorzBar):

write(LowRightCorner);

\vindo\v(Xl,Yl.X2.Y2):

gotoxy(16,l); vvritelnf M E X U ');

gotoxy(15,2):

for i: = 15 to 25 do

\vrite(#196);

gotoxy(2,4); writeln('

gotoxy(2,9); \vriteln('

gotoxy(2,14); \vriteln('

gotoxy(2,20); vvritef = = > ');

gotoxy(7,20); Readln(L'ser_Choise);

delay(1500);

ClrScr;

end:

end.

1. COMBAT IXFO CENTER ');

2. PERSOXEL EVALUATION ');

3. DAMAGE COXTROL CEXTER ');

38

unit try2:
r ** * * ft ** * * * * * * * * *.-:-. :;•- * * * * * * * **************

This module is called by main program and it is used to set the graphics mode

of the computer if the computer has proper hardware The program also calls UserAuth

module to check the authorization.
* * * * * * * * * * * * * * # * * * * * ****** * ****** * * * * * ***********]

interface

uses Graph,Testgr,UserAuth;

procedure screen_handler;

implementation

procedure screen_handler;

var Gr,Found:Boolean;

begin

InitGraph(GraphDriver.GraphMode,");
r r. = Test_Graph_Device(GraphDriver,ErrorCode,GraphMode);

if Gr then

begin

Found: = UserAuth.L"ser_Authorization{Users);

if Found Then

begin

SetGraph.Mode(Graph.Mode);

end;

end

else

CloseGraph;

end;

end.

39

unit userauth;
r« ******** * ****** * * * * * * * * * * * * * ******** * * * * * * l

[* This unit is used to check whether the user has authorization or not. The Unit

is called by the main program. This module has function called as User_Authorization

which turns out to be true or false boolean values. *]
**i

interface

uses Graph,Crt,Dos,Testgr;

type

User = record

ID: Integer;

Password: String;

end;

UserList = array (.1..10.) of User;

var

Users:UserList;

i:integer;

function User_Authorization(Users:UserList):Boolean;

implementation

function User_Authorization(Users:UserList):Boolean;

Var Temp_ID:Integer;

i:integer;

Temp_Password: String;

begin

if Test_Graph_Device(GraphDriver,ErrorCode,Graph.MOde) then begin

Users[1].Password: = 'bicir';

Users[2].Password: = 'aysegul';

OutTextXY(150,50,'ID NUMBER: ');

readln(Temp_ID);

if ((TempJD > = 1001) and (TempJD < = 1010)) then

begin

OutTextXY(150,100, PASS WORD:');

readln(Temp_Password);

if Temp_Password= Users[Temp_ID-1000].Password then

begin

40

end:

User_Authorization: = True;

for i: = 0 to 14 do

OutTextXY(270,150 +(i*10).ACCESS SUCCESFUL');

end

else

begin

OutTextXY(150.50,' ');

OutTextXY(150,100,'PASSWORD:');
readln(Temp_Pass\vord);

If Users[Temp_ID-1000].Password = Temp_Password then

begin

for i:= 1 to 14 do

OutTextXY(150 + (i*10), 150 + (i* 10),'ACCESS SUCCESSFUL');

User_AutHorization: = True;

end

else

begin

OutTextXY(200,200.'USER AUTHORIZATION FAILURE');

User_Authorization: = False;

sound(220);

end;

readln;

end

else

begin

OutTextXY(200,200,'USER AUTHORIZATION FAILURE');

User_Authorization: = False; readln;CloseGraph;

end;

end;

end;

end.

41

unit testgr;
r **************************************** * * * * * * *

This unit is called by the main program TCG. MF. Cakmak and it is used to test

whether proper graphics hardware is already available in the computer.
* * * * * * * * * * * * * * ***1

interface

uses Graph;

GraphDriver,GraphMode,ErrorCode:lnteger;

function Test_Graph_Device(GraphDriver:Integer;

ErrorCode:Integer;

GraphMode:Integer):Boolean;

implementation

function Test_Graph_Device;

begin

GraphDriver: = Detect;

InitGraph(GraphDriver,Graph.Mode,");

ErrorCode: = GraphResult;

ifErrorCode <> grOk then

begin

Test_Graph_Device: = False;

Writeln('Program Aborted');

Halt(l);

end

else

Test_Graph_Device: = True;

end;

end.

42

unit perfile:
• t * * * * * * * * * * * * * * * * >:-• * >:•• * * * * * * * * * * * ******** * * <-• ********** * * * * * * * * * * * *

This unit is used for personel evaluations part of the main

program. The unit is called by the outmenu.out procedure.
* * * « if if if if if ft * if ::•. * * * % if if * >;-. i;. if * *************]

interface

uses Crt,Dos;

label 100;

const

XI = 5: Y1 = 2:X2=75; Y2=22;

zero = 0.0;

type

DateTime = record

Year.Month.Day,Hour,Min,Sec:\vord

end;

astr= string[3]:

var

Ch:Char; k:integer;

Y3:integer;

total.average:real;

«array (.1..10.) of real;

Time:LongInt;

DT:DateTime;

Hour,\linute.Second,SeclOO:\vord;

Year,Month.Day.DayofWeek:\vord;

lastname.name,filename.rank:string[12];

textfile:text;

str:astr;

IOCode:integer;

answer : char;

procedure SetWindow(X 1,Y1 ,X2,Y2:integer);

procedure HandlcKey(Ch:Char);

procedure Condition(Lo\v:integer ; var X: integer ; High : integer);

43

procedure SetXV(Ne\vX,Ne\vY : integer);

procedure HandleFuncKey(Ch : Char):

procedure main;

implementation

procedure SetWindow(Xl,Yl,X2,Y2 :integer);

const

UpLeftCorner = #201 ;

HorzBar = #205 ;

RightCorner = #187 ;

VertBar = #186 ;

LowLeftCorner = #200 ;

LowRightCorner = #188 ;

VertlBar - #179 ;

HorzlBar = #196 ;

var

I.J : integer ;

begin

Window(XM,YM,X2 + l,Y2+l):

ClrScr:

Windo\v(1,1,80,25);

GotoXY(Xl-l,Yl-l);

Write{ UpLeftCorner);

for I:= XI toX2do

Write(HorzBar);

Write(UpRightCorner);

for I:- Yl to Y2do

begin

GotoXY(Xl-U);

Write(VertBar);

GotoXY(X2+l,I);

Writ e(VertBar);

end;

GotoXY(Xl-l,Y2+l);

Write(LowLeftCorner):

44

for I: = XI toX2do

Write! HorzBar);

Write(LowRightCorner);

Window(Xl.Yl.X2.Y2):

for I:= 1 to 10 do begin

forJ: = Xl toX2do

Write(HorzlBar);

Y3: = WhereY+l;

gotoXY(Xl,Y3);

Write;

end;

forJ:= Yl to Y2 do

begin

GotoXY(2.J);

write(VertBar);

GotoXY(4,J);

write(VertBar);

GotoXY(3.J);

Write(Vert Bar):

GotoXY(l.J);

write(VertBar);

GotoXY(5J):

Write(Vert 1 Bar);

GotoXY(25,J);

Write(Vert 1 Bar):

GotoXY(30.J);

write(Vert 1 Bar);

GotoXY(60,J):

Write(Vert 1 Bar);

Gff»XY(40,J);

write(VertlBar);

end;

Window(Xl,Yl,X2,Y2);

end:

procedure Handlekey(Ch:Char);

45

const

BEL = #7;

BS = £S;

CR = #13;

SP = #32;

begin

if Ch = BS then Write(BS,SP,BS)

else if Ch = CR then Writeln

else if Ch > = SP then Write(Ch)

else if CH <> ®Z then write(BEL)

end:

procedure Condition(Lo\v:integer;var X:integer ; High:Integer);

begin

if X < Low then X:= Low-

else if X > High then X:= High;

end;

procedure SetXY(Ne\vX,Ne\vY:Integer);

begin

Condition(5A'ewX,(l +X2-X1));

Condition 2.Ne\vY,(1 + Y2-Y1));

GotoXY(Ne\vX,Ne\vY);

end;

procedure HandleFuncKey(Ch:Char);

const

UpArrow = #72;

LeftArrow = £75;

RightArrow = #77;

DownArrow = #80;

begin

case Ch of

UpArrow : SetXY(WhereX.WhereY-l);

LeftArrow: SetXY(WhereX-l.WhereY);

RightArrow : SetXY(WhereX + 1,WhereY);

DownArrow : SetXY(WhereX,WhereY + 1);

end;

46

end:

(• procedure convert_to_real (stnastr; var r:real);

var i:integer;

begin

case str of

'0':r: = 0.0; '6':r: = 6.0

T:r:=1.0; 7:r: = 7.0

'2':r: = 2.0; '8':r: = 8.0

'3': r: = 3.0; '9':r: = 9.0

'4' : r: = 4.0 ;

'5' : r: = 5.0 ;

end

else begin GotoXY(50,12);

writeln('you should enter a number ');

end:

end: *)

procedure main;

begin

[SI-]

CheckBreak : = False ;

CheckEOF := False;

Direct Video : = True ;

repeat

repeat

total: = 0;

\vriteln('E\TER THE LAST NAME OF WHOM TO BE EVALUATED .. ');

readln(lastname);

ClrScr;

\vriteln(ENTER THE FIRSTNAME OF WHOM TO BE EVALUATED .. ');

readln(name);

ClrScr;

writeinCENTER THE RANK OF WHOM TO BE EVALUATED .. ');

readln(rank);

ClrScr;

47

filename: = concat(lastname,'.',name);

\vriteln('FILENAME IS :',filename);

for k: = 1 to 13 do

writeln;

writelnC EXECUTING ');

for k:= 1 to 15 do begin

write('#');

delay(250);

end;

ClrScr;

assign(textfile,filename);

reset(textfile):

IOCode:=IOResult;

if lOCode < > 0 then begin

writeln;

writelnfFILE DOES NOT EXIST ');

writeln:

delay(500);

writeCDO YOU WANT TO CREATE A FILE ? ');

delay(500);

write('. ');

delay(500);

writeC . ');

writelnC Y ,' N ');

readln(answer);

if ((answer = 'Y') or (answer = 'y')) then begin

if length(lastname)= 2 then

lastname: = concat(lastname,' ')

else if length(lastname)= 3 then

Iastname: • concat(lastname,' ')

else if length(lastname) = 4 then

Iastname : = concat(lastname,' ')

else if length(lastname) = 5 then

Iastname : = concat(lastname,' ')

else if length(lastname)=6 then

48

lastnamc : = concat(lastname,' ')

else if length(lastnamej= 7 then

lastname : = concat(lastname,' ')

else writeln:

filename: = concat(lastname,'.\name);

\vriteln(THE FILE NAME CREATED IS : '.lastname);

IOCode := IOResult;

assign(textfile.filename);

rewrite(textfile);

for k:= 1 to 10 do begin

writeln(textfile.total);

end;

close(textfile);

end

end;

until IOCode = 0;

assign(textfile.filename);

reset(textfile);

while not EOF(textfile) do

begin

readln(textfile.lastname);

for k:=l to 10 do

readln(textfile,e(.k.));

end;

close(textfile);

if filename = " then begin

gotoXY(50,12);writeln('FILE NOT FOUND);

end;

SetWindow(Xl,Yl,X2,Y2);

gotoXY(5.2):

repeat

gotoXY(42,2);

writeln(lastname);

fork:=l to 10 do

becin

49

gotoXY(32,2*k):

\vriteln(e(.k.):3:l);

end;

GOTOXY(8.2);

writeln('RELIABILITY');

GoTOXY(8,4);
writeln(RESPONSIBILITY);

GotoXY(8,6);

Writeln('LEADERSHIP');

GotoXY(7,8);

Writeln('L'NDERSTANDABILITY');

GotoXY(10,10);

Writeln(STAMINA):

GotoXY(8,12);

Writeln('PERSONALITY');

GotoXY(S.14):

WritelnCGOOD MORAL ');

GotoXY(S,16);

Writeln(PRODUCTIVITY);

GotoXY(6,lS);

Writeln(GENERAL BEHAVIOUR);

GotoXY(8,20):

writeln('PROFESSIONALITY');

GOTOXY(42,4);

Writeln(name):

GotoXY(42,6);

writeln(rank);

GotoXY(26,2);

WriteC ');

Readln(e(.l.);(* convert_to_real(str,e[1]);*)

GotoXY(26,4);

writeC ');

Readln(e(.2.));(* convert_to_real(str,e[2]);*)

GotoXY(26.6);

writeC ');

50

Readln(e(.3.)); (* convert_to_real(str,e[3]);*)

GotoXY{26.8);

writeC ');

Readln(e(.4.)V, (* convert_to_real(str,e[4]);*)

GotoXY(26,10);

write(' ');

Readln(e(.5.));(* convert_to_real(str,e[5]);*)

GotoXY(26,12);

write(' ');

Readln(e(.6.)); (* convert_to_real(str,e[6]);*)

GotoXY(26,14);

\vrite(' ');

Readln(e(.7.)): (* convert_to_real(str,e[7]);*)

GotoXY(26,16);

writeC ');

Readln(e(.S.)): (* convert_to_real(str.e[8]);*)

GotoXY(26.1S);

writeC ');

Readln(e(.9.)): (* convert_to_real(str,e[9]);*)

GotoXYf 26.20);WriteC ');

Readln(e(.10.)); (* convert_to_real(str.e[10]);*)

total: = 0;

for k:= 1 to 10 do

total: = total+ e(.k.);

average: = total 10;

GetDate(Year. Month,Day.DayofVVeek);

GotoXY(50,14); write('DATE');

GotoXY(62,14);

Write(Day,'_',Month,'_',Year);

GetTime(Hour,Minute,Second,Secl00);

GotoXY(50,16);

writeln(TIME');

gotoXY(62,16);

\vriteln(Hour.':'.Minute.':'.Second);

GctoXY(50.18); write('TOTAL');

51

GotoXY(66,18):write(total:3:l);

GotoXY(50.20):\vrite('AVERAGE');

GotoXY(66,20):\vrite(average:4:2);

GotoXY(41,2);Write(' ');

readln(lastname);

GotoXY(61,2); writeln('SAVE ? "S" ');

GotoXY(61,4); writeln('MODIFY 2xCR');

GOTOXY(61.6); writeln('QUIT is Z');

READLN(Ch);

if (Ch= 's') or (Ch= 'S') then begin

assign(textfile,fllename);

rewrite(textfile);

writeln(textfile,lastname,' ');

fork:=l to 10 do

writeln(textfile,e[k]:3:1,' ');

close(textfile); end.

writeC '); readln(Ch);

Ch: = Readkey;

if Ch < > £0 then begin

HandleKey(Ch);

total: = 0;

end

elseHandleFuncKey(ReadKey);

until Ch = Z;

Windo\v(1,1,80,25);

ClrScr;

write(DO YOU WANT TO EVALUATE ANOTHER PERSON ..?');

writelnf . Y / N ');

readln(answer);

until ((answer = 'n') or (answer = 'N'));

end;

end.

52

unit cic2:

This unit is called by the outmenu.out procedure if the user enters option 1 in the

main menu. CIC2 has 43 procedures and functions.

interface

uses Dos,Crt,timer,datefind,graph.testgr;

type

maxx = 1..80;

maxy = 1..25;

maxship = 1..30;

ownshiptype = record

speed : real;

course : real;

latitude.longtitude : stringmT5";

end;

targetship_at_tl = record

relative_speed: real;

relative_bearing:real;

true_bearing :real;

speed : real;

range : real;

hour 1.mini.seel :\vord;

end;

targetship_at_t2 = record

relative_speed : real;

relative_bearing :real;

true_bearing : real;

range:real;

speed:real;

hour2.min2,sec2:word;

end;

targetshiptype = record

relativespeed : real;

relative bearinc : real;

53

speed : real;

course : real;

range : real;

MCR : real;

collision : boolean;

air :boolean;

dtime:longint;

end;

Targetshipl_type= array (.maxship.) of targetship_at_tl;

Targetship2_type= array (.maxship.) of targetship_at_t2;

OwnShiptypes • ownshiptype;

Targettype = array (.maxship.) of targetshiptype;

var

TargetShipl : TargetShipl_type;

TargetShip2 : TargetShip2_type;

OwnShip : OwnShiptypes;

Target : Targettype;

sec 100: word;

shipcountl.shipcount2,shipcount,count:integer;

nomore_ships : boolean;

done.quit:boolean;

continue,change_function :boolean;

ChI,Ch2,Ch3:char;

xl : maxx;

yl : maxy;

totaltime:integer;

which_ship_ch:char;

[* LIST OF PROCEDURE AND FUNCTIONS *]
[****«************ *************** ******************************j

function deltatime(hour 1 ,min 1,sec 1 ,hour2,min2,sec2 :word):longint;

procedure timewrite(hourtemp,mintemp,sectemp : word ;

x : maxx ; y : maxy);

procedure execution_signal(var xcoexe : maxx ; var ycoexe : maxy);

procedure air_signal(var xcoair : maxx ; var ycoair : maxy);

54

procedure collision_signal(xcocol : maxx ; ycocol : maxy ;

Target : Targettype ; shipcount : integer);

procedure Initialize_Screen;

procedure Execute(var Targetl : TargetShipl_type ;

var Target2 : TargetShip2_type ;

MyShip : OwnShiptypes;

var Curr_Target : Targettype;

var index : integer);

function let_me_do_myship(which_ship_ch : char): boolean;

procedure mywindo\v(var \vhich_ship_ch:char; var quit: boolean);

procedure do_a(xin.yin,dx,dy:integer);

procedure do_b(xin.yin.dx.dy:integer);

procedure do_c(xin.yin.dx.dy:integer);

procedure do_d(xin,yin.dx,dy:integer);

procedure do_e(xin,yin,dx.dy:integer);

procedure do_f{xin.yin.dx,dy:integer);

procedure do_g(xin,yin,dx.dy:integer);

procedure do_one(xin.yin.dx,dy:integer);
procedure do_tvvo(xin,yin,dx,dy:integer);

procedure do_three(xin,yin.dx.dy:integer);

procedure do_four(xin,yin,dx.dy:integer);

procedure do_five(xin,yin.dx.dy:integer);

procedure do_six(xin,yin,dx,dy:integer);

procedure do_seven(xin,yin,dx.dy:integer);

procedure do_eight(xin.yin,dx,dy:integer);

procedure do_nine(xin,yin,dx,dyinteger);

procedure do_zero{xin,yin,dx,dy:integer);

procedure Initialize(xin,yin,dx,dy:integer);

procedure Counts(x4,y4,dx,dy,counter : integer);

function Startgraphics : boolean ;

procedure radar_screen;

procedure sweep_screen 1;

procedure sweep_screen3;

procedure s\veep_screen4;

procedure s\veep_screen2;

55

procedure OwnShipplot;

procedure TargetShipplot{ var Targetl : TargetShipl_type;

var Target2 : TargetShip2_type;

var Target : Targettype;

shipcount : integer);

procedure radarl(shipcount: integer); procedure do_myShip(var quit: boolean ; var

Change_function : boolean);

function time_to_string(firsthour,firstmin,firstsec:word;

totaltime : integer) : string;

procedure do_guideship(var quit : boolean ; var change_function : boolean);

procedure Thanks_for_L'sing_Cic;

procedure main:

[*** END OF THE LIST OF PROCEDURES AND FUNCTIONS ***]

implementation
r ****s-.**s:*****-i!*.-s***«* DEI TATIMF •••***< *****************]

[This function is used to convert the time difference between two given times into the

value of seconds of which type longinteger. In a given navigational problem, this

function will accept any time difference up to 68 year 18 days which is a lot more than

what is needed for a specific navigational solution.

Function Deltatime is a real time application, function entries hourl,hour2,

mini min2, sec I sec2 are obtained via operating system and passed into the function

deltatime. Function Deltatime is called out by the procedure do_OwnShip which is quite

a real_time application.]

function deltatime(hourl,minl,secl,hour2,min2,sec2 : word);longint;

var

timedifference :longint;

begin

if((sec2 < seel) and (min2 < mini)) then begin

hour2: = hour2-l;

min2: = min2 + 59;

sec2: = sec2 + 60;

end

else if ((sec2 < seel) and (min2 > = mini)) then begin

if min2 = minl then begin

56

hour2:= hour2-l;

min2: = min2 + 59;

sec2: = sec2 + 59:

end

else begin

min2: = min2-l;

sec2: = sec2 + 60;

end;

end

else if ((sec2 > = seel) and (min2 < mini)) then begin

hour2: = (hour2)-l;

min2 : = min2 + 60;

end

else begin end;

timedifTerencc: = (((hour2-hourl)*3600) + ((min2-minl)*60) + (sec2-secl));

deltatime : = timedifference;

end: [function deltatime]
I*************** END OF FUNTION DELTATIME ******************]
r * * * * if * if if if if if if if if if if * if if if TI Vf F W R ITF *#***•**#***#**** * * * * * • 1

[This Procedure is used to write a given specific time into the specifed positions of the

screen. The Specific time is designated by procedure parameters hourtemp, mintemp,

and sectemp while the specific screen location is designated by the x,y coordinates.]

procedure timewrite(hourtemp.mintemp,sectemp : word : x : maxx;

y : maxy);

begin

if ((mintemp < 10) and (sectemp < 10)) then begin

gotoxy(x,y); write(hourtemp,':0',mintemp,':0',sectemp);

end

else if ((mintemp < 10) and (sectemp > = 10)) then begin

gotoxy(x,y); write(hourtemp,':0',mintemp,':',sectemp);

end

else if ((mintemp > = 10) and (sectemp < 10)) then begin

gotoxy(x.y); write(hourtemp,':',mintemp.':0',sectemp);

end

57

else begin

gotoxy(x.y); write(hourtemp/:\mintemp,':',sectemp);

end

end; [procedure of procedure timewrite]

I************** END 0F THE PROCEDURE TIMEWRITE **************]

r******************** EXECUTION SIGNAL *********•*******•*•****]

[This procedure is used to signal that the execution is about to be done. Procedure

parameters are designated screen coordinates.]

procedure execution_signal(var xcoexe:maxx; var ycoexe:maxy);

var

i : integer;

begin

for i : • 1 to 3 do begin

gotoxy(xcoexe.ycoexe);

\vrite(' ');

delay(250);

gotoxy(xcoexe.ycoexe);

write('EXECUTION');

delay(250);

end;

gotoxy(xcoexe.ycoexe); write(' ');

end; [procedure execution_signal]

r*********************** AIR SIGNAL *************************i

This procedure will show any air target tracked in the designated screen location.

The screen location is designated by the pair xcoair and ycoair.]

procedure air_signal(var xcoairmaxx ; var ycoair:maxy);

var

i : integer ;

5S

begin

for i : = 1 to 4 do begin

gotoxy(xcoair.ycoair):

writef ');

delay(500);

gotoxy(xcoair.ycoair);

write{chr(177),chr(176),' AIR \chr(176),chr(177));

delay(500);

end;

end; [procedure air signal]

f*****S*******$******# COI I ISIO\ SIG*\I *##***********#**********1

This procedure will let the user know if the ownship course and speed is in conflict

with any of the tracked targets' course and speed. If any of the targets will get as 500

yards (or lower) as close then the procedure warns the user as collision may happen by

sounding in a special frequency and flashing in the corresponding screen location.

The procedure parameters are x.y screen coordinate pairs and Target with

shipcount. This procedure is called by the do_Ownship procedure.]

procedure collision_signal(xcocol : maxx ;

ycocol : maxy ;

Target : Targettype;

shipcount :integer);

var

i : integer ;

begin

for i : = 1 to 3 do begin

gotoxy(xcocol.ycocol):

write(Target[shipcount].MCR :6:0);

delay(lOOO);

gotoxy(xcocol.ycocol);

writer '):
Crt.Sound(560);

dclavflOOO»;

59

Crt.XoSound:

gotoxy(xcocol,ycocol);

write(COLLISION);

delay(500);

gutoxy(xcocol,ycocol);

writeC ');

gotoxy(xcocol.ycocol);

write(Target[shipcount].MCR:6:0);

end:

gotoxy(xcocol.ycocol);

write(Target[shipcount].MCR:6:0);

end ;[end of procedure collision_signal]

[***•*•****** END OF PROCEDURE COLLISION SIGNAL ************]

ft*«****«******«*«*** INITIALIZE SCREEN ******************]

This procedure does not have any parameters and is used to clean up data displayed

in the corresponding screen locations. This will let the user enter his new data for new-

targets and new ownship and guideship navigational data. This procedure is called by

do myship and go_guideship modules.]

procedure Initialize_Screen;

var

i:integer;

begin

timer.zaman(25,ll,Ch); Ch := ReadKey;

if Ch = # 13 then begin

i: = 13;

repeat

gotoxy(21,i); write(' ');

i: = i+2;

gotoxy(61,i); write(' ');

until i = 23;

i: = 7;

repeat

60

gotoxy(61,i); writef ');

i: = i+2:

gotoxy(61,i); vvrite(' ');

until i= 13;

gotoxy(21,23) write(' ');

gotoxy(61,23) write(' ');

end;

end; [end of procedure Initialize Screen]

r ft********************* EXFCL'TE ************************** i

This procedure solves all the navigational equations, finds the results. The parameters

are all data in the beginning and in the final positions of the targetships and OwnShip

or the guideship and ownship. The total number of the ships is passed into the proce-

dure. The output is Curr_Target which has all the data in record data structure of the

what is needed. This procedure is called by the the modules dojnyShip and

do_guideship.]

procedure execute(var Target l:TargetShipl_type;

var Target2: TargetShip2_t\ pe;

MyShip :OwnShiptypes ;

var Curr_Target : Targettype;

var index :integer);

const

one_radian = 57.2957;

one_mile = 2000;

var

OwnShipx,OwnShipy,Rl,R2,Teta,

Teta 1 ,Teta2,DeltaTeta.limit_angle_value:real;

TargetShip 1 x,TargetShip2x,

TargetShiply,TargetShip2y,

TargetShip3x,TargetShip4x,

61

TargetShip3y,TargetShip4y.
TargetShip5x.TargetShip5y,

deltax.deltay.slope.

inverse_slope.relative_motion.

Relative_speed_in_yards,

targetcourse_temp: real:

i:longint;

sectorl,sector2.sector3,sector4,

sector_north,sector_south.

sector_east,sector_west: boolean ;

begin

sectorl := false; sector2 := false;

sectors := false; sector4 := false;

sector_north: = false ; sector_north: = false;

sector_east: = false; sector_\vest: = false;

Curr_Target[index].collision : • false:

Curr_Target[index].air := false;

if OwnShip.course = 0.0 then

OwnShip.course: = OwnShip.course + 360.0;

Teta := (OwnShip.course , one_radian);

OwnShipx := 2000 * OwnShip.speed * sin(Teta);

OwnShipy : = 2000 * OwnShip.speed * cos(Teta);

Tetal := (OwnShip.course + Targetl[index].relative_bearing) ,' (onejradian);

Teta2 := (OwnShip.course + Target2[index].relative_bearing) / (one_radian);

Rl := Target 1[index].range;

R2 := Target2[index].range;

TargetShiplx := Rl * sin(Tetal);

TargetShiply := Rl * cos(Tetal);

TargetShip2x : = R2 * sin(Teta2);

TargetShip2y : = R2 * cos(Teta2);

if ((TargetShip2x <> TargetShiplx) and (TargetShip2y = TargetShiply» then

slope : = 0

else if ((TargetShip2x = TargetShiplx) and (TargetShip2y= TargetShiply)) then

slope : = 0

else if ((TargetShip2x = TargetShiplx) and (TargetShip2y < > TargetShiply)) then

62

slope : = 1.6E7

else slope := (TargetShip2y-TargetShiply) (TargetShip2x-TargetShiplx);

dcltax := TargetShiplx - OwnShipx;

deltay := TargetShiply - OwnShipy;

TargetShip3x : = TargetShip2x - deltax;

TargetShip3y : = TargetShip2y - deltay;

Relative_motion : = sqrt(sqr(TargetShip2y - Targetshiply) +

sqr(TargetShip2x - TargetShiplx));

if Curr_Target[index].dtime < > 0 then

[this if statement will prevent crashing of the program if the user

hits enter accidentally]

Relative_speed_in_yards := (3600 * relative_motion) Curr_Target[index].dtime

else Relative_speed_in_yards := (3600 * relative_motion) 1.0 ;

if (Relative_motion < > 0) then begin

TargetShip4x := ((((TargetShip3x-OwnShipx)*Relative_speed_in_yards) +

(Relative jiiotion*OwnShipx))(Relative_motion));

TargetShip4y := (OwnShipy - slope * (OwnShipx - TargetShip4x));

if TargetShip4y < > 0 then

targetcourse_temp : = Arctan(TargetShip4x / TargetShip4y)

else targetcourse_temp: = (1.6E6) (one_radian);

Curr_Target[index].course : = targetcourse_temp * (one_radian);

i: = Round(Curr_Target[index].course);

i: = i mod 360:

Curr_Targetfflindex".course := i;

sectorl := ((TargetShip4x > 0) and (TargetShip4y > 0));

sector2 : = ((TargetShip4x > 0) and (TargetShip4y < 0));

sector3 : = ((TargetShip4x < 0) and (TargetShip4y < 0));

sector4:= ((TargetShip4x > 0) and (TargetShip4y < 0));

sector_north : • ((TargetShip4x = 0) and (TargetShip4y > 0));

sector_south := ((TargetShip4x = 0^ and (TargetShip4y < 0));

sector_east : = ((TargetShip4x > 0) and (TargetShip4y = 0));

scctor_west : = ((TargetShip4x < 0) and (TargetShip4y = 0));

63

—

if sector2 then Curr_Target[index].course := Target[index]course-180

else if sector? then

Curr_Target[index].course : = Target[index].course + 180;

if sector_north then begin

if (TargetShip-Jy < OwnShipy) then

Curr_Target[index].course : = 180

else if (TargetShip4y > OwnShipy) then

Curr_Target[index].course : = 0;

end

else if sector_south then begin

if (TargetShip4y < OwnShipy) then

Curr_Target[index].course : = ISO

else if (TargetShip4y > OwnShipy) then

Curr_Target[index].course : = 0;

end

else if sector_east then begin

if (TargetShip4x < OwnShipx) then

Curr_Target[index].course: = 270

else if (TargetShip4x > OwnShipx) then

Curr_Target[index].course : = 90 ;

end

else if sector_west then begin

if (TargetShip4x < OwnShipx) then

Curr_ i arget[index].course : = 270

else if (TargetShip4x > OwnShipx) then

Curr_Target[index].course : = 90;

end;

Curr_Target[index].speed := (sqrt(sqr(TargetShip4x)

+ sqr(TargetShip4y)))/ one_mile;

end

else begin

Curr_Target[index].course : • MyShip.course ;

Curr_Target[index].speed := MyShip.speed;

end;

64

if Curr_Target[inde\].course < 0.0 then

Curr_Target[inde\].course := 360 + Curr_Target[indexj.course;

if slope = 0.0 then inverse_slope : = 1.6E7

else inverse_slope: = -1.0 slope:

TargetShip5x := (TargetShiply - (slope * (TargetShiplx)))

,' (inverse_slope - slope):

TargetShipSy := inverse_slope * TargetShip5x ;

DeltaTeta : = abs(Teta2 - Tetal);

if DeltaTeta > pi then DeltaTeta : = (2*pi) - DeltaTeta;

if DeltaTeta < > 0.0 then begin

if Relative_motion < > 0.0 then

begin

limit_angle_value : = (sinfDeltaTeta) * Target2fflindex".range) /

{ Relative_motion);

if ((limit_angle_value > = 1.0)) then

Curr_Target[index].MCR := Target 1 [index].range

else

Curr_Target[index].MCR := sqrt(sqr(TargetShip5x) +

sqr(TargetShip5y));

if Targetl[index].range < Target2[index].range then [check again

Curr_Target[index).MCR := Targetl[index].range:

end

else Curr_Target[index].MCR := Target 1 [index].range;

end

else begin [** DeltaTeta = 0 **]

if Target 1 [index].range > TargetShip2[index].range then

Curr_Target[index].MCR:= 0.0

else Curr_Target[index].MCR := Target 1 [index].range

end ;

Curr_Target[index].collision := Curr_Target[index].MCR < 500;

Curr_Target[index].air : = Curr_Target[index].speed > 50;

65

end; [* procedure execute *]

|*M*««M*UM E>,D OF PROCEDURE EXECUTE **************]

r******************* LET ME DO MYSHIP ***•*************<•***]

[This function returns the boolean value true if User hits enter or Upper or lower

case o'. The function parameter \vhich_ship_ch is obtained and passed into the

function.]

function let_me_do_myship(which_ship_ch : char):boolean ;

var

doit : boolean ;

begin

doit:= (\vhich_ship_ch = #111) or (which_ship_ch = #79)

or (which_ship_ch = #13);

let_me_do_m> ship : = doit;

end: [* function let_me_do_my_ship *]

r *************** ******* M YWINDOW ***********************i

f * * * * * * * * * * * * * * ** * * * 1

This procedure draws the initial window of CIC program; OwnShip TargetShip,

PivotShip data are always entered and the navigation problem solutions are displayed

in this window. If there exist no navigational problem to be solved, window shows either

the current time or the last solution presented by the software package. The current

time representation and the data entries are managed by the automatic cursor move-

ments, so that the user does not have to worry about which datum he/she should enter

in which order. This procedure will pass two variables to the interfaced modules : One

of them is which_ship_ch that is of type char, may be entered two show the intention

of the user. The other variable passed to interfacing modules is that of quit which returns

true if the user wants to quit program as soon as it runs. Procedure Mywindow is called

by procedure do_myShip and procedure do_guideShip and main program as well.]

66

procedure mywindow (var which_ship_ch :char ;

var quit : boolean);

var

i.k: integer;

begin

nomore_ships: = false;

done : = false;

[\vindo\v(2,2,79,24);]

clrscr;

TextBackground(4);

TextColor(2);

window{ 1.1,80,25);

gotoxy(l.l);

write(#201);

for i: = 2 to 77 do

\vrite(=205);

wite(#187);

for i: = 2 to 23 do begin

gotoxy(l,i);\vrite(#186);

gotoxy(7S,i); write{£186);

end;

gotoxy(l,4); write(#204);

gotoxy(l,24);

\vrite(£200);

for i: = 2 to 77 do

write(#205);

write(#l88);

window(2,2,79,24);

gotoxy(18,l); writef N'EVZAT GU LESEN PRESENTS');

gotoxy(23,2); writeln('C OMBAT INFO CENTER ');

67

\vindow(2.2.79.24);

gotoxy(1.3):

for i: = 2 to 77 do

write(s205):

write(^lS5);

gotoxy(39,3);\vrite(s203);

for i: = 4 to 22 do begin

gotoxy(39.i); \vrite(slS6);

end;

gotoxy(39.23); write(s202);

\vindo\v{ 1,1,80,25);

gotoxy(1.6);

vvrite(s204);

for i: = 2 to 39 do

\vrite(=205); \vrite(=206);

for i:= 41 to 77 do

write(#205);

write(=185);

gotoxy(14.5);

write(OWN SHIP DATA ');

gotoxy(52,5);

write* TARGET SHIP DATA ');

for k: = 0 to 7 do begin

gotoxy(1.8 + (2*k));
write(#199);

for i: = 2 to 39 do

write(#196);

write(#215);

fori: = 41 to 77 do

write(#196);

write(#182);

end;

gotoxy(20,6);

for i: = 7 to 23 do begin

gotoxy(20,i);

68

\vrite(= 179);

gotoxy(60.i);

writer 179);

end;

gotoxy(20.6);

write(»209);

goto\y(60,6);

write<#209);

gotoxy(20,24);

write(=207);

got oxy(60,24);

write(«207);

gotoxy(20.6);

for i: = 0 to 7 do begin

gotoxy(20.8 + (r2)): \vrite(£197):

gotoxy(60.8 + (i*2)); \vrite(*197);

end;

gotoxy(3,7);

write(T.C.G M.F.CAKMAK);

gotoxy(24.7);

write(STATUS .A . ');

gotoxy(43.7);

write(RELATIVE BEARING);

gotoxy(7.9);

writeC TODAY);

datefind.tarih(21.9):

gotoxy(48,9);

write(RANGE);

gotoxy(5,ll):

write(CURRENT TIME ');

gotoxy(47,ll);

write('ATTIME');

gotoxy(7,13);

write(SPEED);

gotoxy(43,13);

69

write* RELATIVE BEARING):

gotoxy(7,15):

wnte(COURSE):

gotoxy(4S,15):

write('RANGE');

gotoxy(4.17):

writeCOWNSHIP , PIVOT):

gotoxy(46.17);

write('AT TIME);

gotoxy(2,19);

writeC CHANGE FUNCTION):

gotoxy<43.19):

\vritc(TARGET SPEED ');

gotoxy(5.21):

\vrite('MORE SHIPS ?');

gotoxy(43.21);

\vritc(TARGET COURSE \chr(233)):

gotoxy(4.23);

\vrite('TARGET_TRACKED ');

gotoxy(4S.23);

writeCMCR '):

timer.zaman(25.11,Ch);

Ch: = ReadKey;

ifCh"#I3 then begin end;

gotoxy(26.I7):

Read(\vhich_ship_ch);

gotoxy(26,17);

\vrite(which_ship_ch);

quit : = (\vhich_ship_ch = # 113) or (which_ship_ch = #81);

end; [procedure mywindovv]

j**«*,********* END OF PROCEDURE MYWINDOVV *••*«********•*]

[••••*•••••••• GROUP SEVEN SEGMENT PROCEDURES ••*•****••••*•]

70

These seven segment procedures create seven segment display on the given screen

coordinates.They draw lines to achieve the goal.The screen coordinates are given by the

xin.yin parameters while the length and the width are assigned by the dx and dy

parameters.This package may be employed to write script in future implementations as

well. For the time being only the numbers from 0 to 9 has been implemented. The

procedures form do_a through do_g are used to draw eigth approp_ riate lines. These

group of procedures are used in graphics mode, so the package will require any of dif-

ferent kinds of graphic devices]

procedure do_a(xin.yin.dx.dy : integer);

[draws a line known as 'a' edge in seven segment display structure]

begin

Line(xin.yin.xin + dx.yin);

end:

procedure do_b(xin.>in.dx.dy : integer);

[draws a line known as b' edge in seven segment display structure]

begin

Line(xin + dx.yin.xin + dx.yin + dy):

end;

procedure do_c(xin,yin.dx.dy : integer);

[draws a line known as 'c' edge in seven segment display structure]

begin

Line(xin + dx.yin + dy.xin + dx.yin + (2*dy));

end;

procedure do_d(xin.yin.dx.dy :integer);

[draws a line known as'd' edge in seven segment display structure]

begin

Line(xin,(yin + 2*(dy)),xin + dx.yin + 2*(dy));

end;

procedure do_e(xin.yin,dx,dy: integer);

[draws a line known as e' edge in seven segment display structure J

begin

Line(xin.yin,xin,yin + dy);

end;

procedure do_f?xin,yin.dx,dy : integer);

71

[draws a line known as T edge in seven segment display structure]

begin

Line(xin.yin + dy.xin.yin + 2*(dy));

end:

procedure do_g(xin.yin.dx.dy : integer);

[draws a line known as g' edge in seven segment display structure]

begin

Linc(xin.yin -1- dy.xin + dx.yin + dy);

end;
[********** END OF SEVEN SEGMENT GROUP PROCEDURES ••*•**•***]
:******** **************** **** ***************************%*********** ****|

[•*,*•********.**«, GROUP NTMBER PROCEDU RES *%*••**•**••***•*]

[These procedures display numbers on the screen at the given screen coordinates. 1

procedure do_one(xin.yin.dx.dy:integer);

[displays digital 1 in seven segment display structure]

begin

do_b(xin.yin.dx.dy) ;

do_c(xin.yin.dx.dy);

end;

preccdUM do_two(xin.yin.dx.dy:integer);

(displays digital 2 in seven segment display structure |

begin

do_a(xin.yin.dx.dy);

do_b(xin.yin.dx.dy);

do_g(xin.yin.dx.dy);

do_R xin.yin.dx.dy);

do_d(xin.yin.dx.dy);

end;

procedure do_three(xin,yin.dx,dy:integer);

(displays digital 3 in seven segment display structure]

begin

do_a(xin.yin.dx.dy);

do_b< xin.yin.dx.dy);

do_c(xin.yin.dx.dy);

do_g(xin.yin.dx.dy):

72

do_d< xin.yin.dx.dy):

end:

procedure do_four(xin.yin.dx.dy:integer>:

[displays digital 4 in seven segment display structure]

begin

do_ei xin.yin.dx.dy);

do_g(xin.yin.d\.dy);

do_b(\in.yin.d\,dy);

do_c< xin.yin.dx.dy);

end;

procedure do_five(\in.yin.d.\.dy:integer);

j displays digital 5 in seven segment display structure

begin

do_a(xin.yin.dx.dy):

do_e(xin.yin.dx.dy):

do_g(xin.yin.dx.dy);

do_c(xin.yin.dx.dy):

do_d(xin.yin.dx.dy);

end:

procedure do_six(xin.yin.dx.dy:integer);

[displays digital 6 in seven segment display structure]

begin

do_a(xin.yin.dx.dy):

do_e(xin.yin.dx.dy»:

do_g(xin.yin.dx.dy):

do_c< xin.yin.dx.dy);

do_f(xin.yin.dx.dy);

do_d(xin.y in.dx .dy);

end;

procedure do_seven(xin.yin.dx.dy:integer);

[displays digital 7 in seven segment display structure \

begin

do_a(xin.yin.dx.dy):

do_b< xin.yin.dx.dy);

do cixin.yin.dx.dv);

73

end;

procedure do_eight(xin,yin,dx.dy:integer);

[displays digital 8 in seven segment display structure , this procedure different from

the all others uses all the edges in seven segment display]

begin

do_a(xin,yin,dx,dy);

do_b(xin,yin,dx.dy);

do_c(xin,yin.dx,dy);

do_d(xin,yin,dx,dy);

do_g(xin.yin,dx,dy);

do_e(xin,yin,dx,dy);

do_f(xin.yin,dx,dy):
end;

procedure do_nine(xin.yin.dx.dy:integer);

(displays digital 9 in seven segment display structure]

begin

do_a(xin.yin,dx.dy);

do_b(xin.yin,dx.dy);

do_c(xin.yin,dx,dy);

do_d(xin.yin.dx.dy);

do_e(xin,yin,dx.dy);

do_g(xin,yin.dx,dy);

end;

procedure do_zero(xin,yin,dx,dy:integer);

[displays digital zero in seven segment display structure 1

begin

do_a(xin,yin,dx,dy);

do_b(xin,yin,dx,dy);

do_c(xin,yin,dx,dy);

do_d(xin,yin,dx.dy);

do_e(xin,yin,dx,dy);

do_f(xin,yin,dx.dy);

end;

[****•••• END OF THE GROUP NUMBER PROCEDURES ********]
| <s« iS i»t i> << * «ft >>•. t * <i * a fc <•.**« <i i> * if.« « i)> <t * tfiHttitiifyttttt >)«i»***iJi***<i****i)ti>!****i>«***»X*1

74

procedure Initialize(xin.yin,dx,dy:integer);

[This procedure is used to clear up the screen from previously displayed digital seven

segmem numbers]

var i,k:integer;

begin

for i:= 0 to dx+ 1 do begin

OutTextXY(xin + i.yin,' ');

fork:= 0to(2*dy+l)do

OutTextXY(\in,yin + i,' ');

end;

end; { procedure Initialize]

procedure counts(x4.y4,dx.dy,counter:integer);

[This procedure is used to count (backward from nine to zero in this implementa-

tion) using seven segment display.]

var j:integer;

besin

for j : = counter dovvnto 0 do begin

case j of

9 : begin do_nine(x4,y4,dx.dy) ; delay(300); end;

8 : begin dc_eight(x4,y4.dx,dy); delay(300); end;

7 : begin do_seven(x4,y4,dx,dy); delay(300); end;

6 : begin do_six(x4.y4,dx.dy) ; delay(300); end;

5 : begin do_five(x4,y4,dx,dy) ; delay(300); end;

4 : begin do_four(x4,y4,dx,dy) ; delay(330); end;

3 : begin do_three(x4,y4.dx,dy); delay(330); end;

2 : begin do_two(x4,y4,dx,dy) ; delay(330); end;
1 : begin do_one(x4,y4,dx,dy) ; delay(330); end;

0 : begin do_zero(x4,y4,dx,dy) ; delay(330); end;

end; [case statement]

ClearviewPort;

end; [for loop]

end; [procedure]

75

f # :> * « tf <<>••. * * $ ft * ;<-.« * $ 1«1 * * $ * * rTt I1T/- RAPHFCS * * * **************** *****]

function Startgraphics :boolean;

[This function checks the whether proper (or any) graphic device has been

alreadyinstalled into the computer on which software package runs. The function will

return true boolean value if the computer has the graphic devices.]

var testgrok : boolean;

begin

InitGraph(GraphDriver,GraphMode,' ');

testgrok : = TestGr.Test_Graph_Device(GraphDriver,ErrorCode,GraphMode);

if testgrok then begin

ClearViewPort;

Startgraphics : = testgrok;

end

else begin

CloseGraph;

Halt(l);

end;

end; [function]

procedure radar_screen;

[This procedure simulates the radar screen displaying whatever is seen in a real life

radar]

const

bigcirclescale = 50;

smallcirclescale = 2;

var Xmid.integer;

Ymid:integer;

Asratio : real;

irinteger;

Palette : Palettetype:

begin

ClearViewPort;

Xmid: = GetMaxX div 2;

Ymid: = Get\laxYdiv2;

76

[if Palette.size< > 1 then (USE IF EGA GRAPHICS CARD AVALILABLE)]

for i : = 1 to 4 do begin

Circie(Get.MaxX div 2, GetMaxY div 2.bigcirclescale * i);

Circle(GetMaxX div 2, GetMaxY div 2,smallcirclescale * i);

end;

Line(Xmid-210,Ymid,Xmid + 210,Ymid);

Line(360,10,360,330);

delay(lOO);

OutTextX Y(Xmid + 215,171 ,'090');

OutTextXY(Xmid-235,171,'270');

OutTextXY(Xmid, 10,000);

OutTextXY(Xmid.337,TS0');

OutTextXY(470,41,'030');

OutTextXY(535.95,'060);

OutTextX Y(535,248,'I 20');

OutTextX Y(470,300.' 150);

OutTextXY(225,305,'210):

OutTextXY(165.24S,'240');

OutTextXY(160,92,'300');

OutTextXY(220,40,'330');

end; [procedure radar_screen]

r * t? * * * A * * * * * * * f.- * * * * * * * * * * * * * « ******** * ************* * * * * * ************ * * * 1

I*********** SWEEP SCREEN GROUP PROCEDURES ******************]

[There are four sweep screen procedures. These procedures sweep the radar screen

to simulate a real life radar. They continuously draw lines from origin (0,0) of the coor-

dinate system to the outer circle.

The procedures continuously calculate the coordinate of every single point which is

on the outer circle. In calculation,procedure employs the general circle equation known

as:

sqr(x-a) + sqr(y-b)= sqr(radius).]

77

procedure s\veep_screenl:

[this procedure sweeps the first sector in the radar screen]

var

Xmidd : integer;

Ymidd : integer;

AspRatio : real;

Xasp.Yasp : word;

j:integer;

xotemp:real;

begin

GetAspectRatio(Xasp,Yasp);

AspRatio: = Xasp Yasp;

Xmidd := GetMaxX div 2;

Ymidd := GetMaxY div 2;

J: = -1S0;

repeat

xotemp: = Round(j);

Line(Xmidd,Yniidd,Xmidd + j,Ymidd - Round(AspRatio *

sqrt(abs(40000 - sqr(xotemp)))));

delay(15);

j: = j+l;

until j= 180;

end; [procedure sweep_screenl]

procedure sweep_screen3;

[This procedure sweeps the third radar sector which is next to the

first radar sector by implementation definition]

var i: integer;

Xmid.Ymid : integer;

Asratio:real;

xtemprreal;

Xasp,Yasp:word;

begin

i: = 59;

Xmid: = GetMaxX div 2;

78

Ymid: = Get\IaxY c,* 2:

GetAspectRatio(Xasp.Yasp);

Asratio := Xasp Yasp;

xtemp: = 0:

repeat

xtemp : = i;

Line(Xmid,Ymid,(Xmid + Round(200*sin(xtemp,'52.295))),Ymid -

Round(AsRatio * (200*cos(xtemp, 52.2957))));

delay(25);

i: = i+l;

until i= 120;

end:[procedure s\veep_screen3]

procedure s\veep_screen4;

[This procedure sweeps the fourth radar sector which is next to the second radar

sector defined by implementation]

var

i: integer;

xtemp:real;

Xmid.Ymid : integer;

Asratio : real;

Xasp,Yasp:word;

begin

Xmid :- GetVIaxX div 2;

Ymid : = GetMaxY div 2;

GetAspectRatio(Xasp,Yasp);

AsRatio : = Xasp , Yasp;

i: = 59;

xtemp: = 0;

repeat

xtemp: = i;

Line(Xmid,Ymid,Xmid-Round(200 * sin(xtemp/52.295)),

Ymid+Round(200 * AsRatio * cos(xtemp/52.295)));

delay(25);

i: = i+l;

79

until i = 122;

end ; [procedure sweep_screen4]

procedure sweep_screen2;

[This procedure will sweep the second radar sector which is before the fourth and

after the third radar sector. This definition does not have any scientific importance and

is given by the author of the software package]

var i :integer;

xtemp-.real;

Xmid,Ymid : integer;

Xasp,Yasp:word;

AsRatio : real;

begin

Xmid :- GetMAxX div 2; Ymid:= GetMaxY div 2;
GetAspectRatio(Xasp,Yasp);

Asratio : = Xasp ' Yasp;

i: = -1 SO;

repeat;

xtemp: = Round(i);

Line(XmidY*nüd,Xmid-i,Ymid + Round(AsRatio •

sqrt(abs(40000 - sqr(xtemp)))));

dclay(15);

i: = i+l;

until i = ISO;

end: [procedure Svveep_screen2]

[•********* END OF THE SWEEP SCREEN PROCEDURES ***********]

[****«******** PROCEDURE OWNSHIP PLOT ****************]

This procedure plots the Ownship by employing ownship data rigth in the middle

of the screen and radar display. In a real life radar it is not possible to see the OwnShip

speed. This procedure also displays the own ship speed and course vector. In a real life

radar it's also quite hard for the operator to see the ships' true course. This software

package will show the true course and speed to the operator very clearly.]

procedure OwnShipPlot;

80

const scale = 100;

var xtemp,ytemp.xadd,xsubt,yadd,ysubt : integer;

0\vnShipx.O\vnShipy:real;

Xasp, Yasp : word;

Xmid,Ymid :integer;

AsRatio : real;

begin

Xmid : = GetMaxX div 2;

Ymid : = GetMaxY div 2;

GetAspectRatio(Xasp.Yasp);

AsRatio := Xasp Yasp;

OwnShipx: = 2000*OwnShip.speed*sin(OwnShip.course/57.2957);

OwnShipy: = 2000*OwnShip.speed*cos(OwnShip.course 57.2957);

xtemp := abs(Round(OwnShipx scale));

ytemp := abs(Round(AsRatio * (OwnShipy scale)));

xadd : = Xmid + xtemp ; xsubt : = Xmid - xtemp;

yadd : = Ymid + ytemp ; ysubt : = Ymid - ytemp;

if Ownshipx > = 0 then xtemp : = xadd

else xtemp : = xsubt;

if (OwnShip.course> =270) or (OwnShip.course < = 90) then

ytemp: = ysubt

else ytemp : = yadd:

Line(Xmid,Ymid,xtemp,ytemp);

end; [procedure OwnShipPlot]
[*••****•***** END OF THE PROCEDURE OWNSHIPPLOT ******•****]

I************** PROCEDURE TARGETSHIP PLOT *******************]

[This procedure displays all the targets' speed and course vectors. The procedure

also plots the target as a signal relative to the ownship position where is also relative to

the middle of the radar and computer screen. In a real time radar, targets' courses and

speeds are not displayed. This package solves the problem and makes it a lot easier to

the radar operator. All the target data is passed into the procedure.]

81

procedure TargetShipplot(var Target l:TargetShipl_type;

var Target2:TargetShip2_type;

var Target:Targettype;

shipcount:integer);

const targetradius = 1;

scale = 100;

var

ArcCoords.ArcCoordsType;

Xtemp,ytemp,i,k,xtemp2,ytemp2 rlongint;

xadd.yadd,xsubt,ysubt: integer;

TargetShiplx,TargetShiply:array (.maxship.) of real;

TargetShip6x,TargetShip6y:array (.maxship.) of longint;

xtempl ,AsRatio:real;

deltax,deltay:longint;

ship_id :string;

Xasp,Yasp:\vord;

Xmid.Ymid : integer;

begin

GetAspectRatio(Xasp.Yasp);

AsRatio: = (Xasp Yasp):

Xmid : = Get.MaxX div 2; Ymid : = GetMaxY div 2;

for k: = 1 to shipcount do begin

TargetShiplx[k] := Targetl[k].range * sin((0\vnShip.course +

Targetl[k].relative_bearing)/57.2957);

TargetShiply[k] := Targetl[k].range * cos((C)\vnShip.course +

Target l[k].relative_bearing),'57.2957);

TargetShip6x[k]: = Round(Target[k].speed * 2000 *

Sin(Target[k].course/57.2957)/(scale));

TargetShip6y[k]: = Round(Target[k].speed *2000 *

AsRatio * (Cos(Target[k].course/57.2957)'(scale)));

deltax : = TargetShip6x[k]; deltay: = TargetShip6y[k];

xtempl := (TargetShiplx(k) scale);

82

xtemp: = abs(round(xtempl));

ytemp := (Round(AsRatio * (TargetShiply[k] scale)));

xadd : = xtemp + Xmid:

xsubt : = Xmid - xtemp ;

if TargetShiplx[k] > 0 then xtemp := xadd

else xtemp : = xsubt;

if ytemp > 0 then ytemp : = Ymid - ytemp

else ytemp : = abs(ytemp) + Ymid;

for i : = 1 to 4 do

Circle(xtemp,ytemp.targetradius*3); [draw the signal on the radar]

xtemp2: = xtemp + deltax;

if deltay > = 0 then

ytemp2 : = ytemp - deltay

else ytemp2 := ytemp + abs(deltay);
« if if <-. *>:-.*«<! ;:•. if if * * * * if * if.-]-. if ifif * * if * * if if * if if if if if 1

•* Arc Solution to the unknown Targetship coordinates as in

** real life radar solution

** if Target[k].Course <= 90 then

** Arc(xtemp.ytemp,90,90 - Round(Target[k].course),

Round(Target[k].speed * 2000 / scale))

else

Arc(xtemp,ytemp,90,450 - Round(Target[kJ.course),

Round(Target[k].speed • 2000 ,' scale));

GetArcCoords(ArcCoords);

with ArcCoords do

[** [Xstart := xtemp; Ystart: = ytemp;

[** Line(xtemp,ytemp,Xend,Yend);
J * * * * * * * * * * « « # « 4: « 4 r:: « ^ « « « « « « « ^ 4: # « « * « -i: * « * * « * « « * » « ^ « « « « ^ * # * * * ^ # ^ # « « * ^ # # 1

Line(xtemp,ytemp,xtemp2,ytemp2);

if((xtemp2 > GetMaxX) or (xtemp2 < 0) or (ytemp2 > Get.MaxY)

or (ytemp2 < 0)) then

OutTextXY(xtemp + 10,ytemp-10,chr(l 1));

if k < 10 then begin

Shipjd := chr(48 + k);

83

OutTextXY{xtemp + 5,ytemp.Ship_id);

end;

end:

end: [procedure targetshipplot]
i*************** END OF THE TARGETSHIPPLOT *•*******************]

r******************** PROCEDURE RADAR1 ******•********************]

procedure radar l(shipcount: integer);

[this procedure handles all the radar operations calling the group procedures.]

var

k,kten,total : integer;

xtemp : integer;

Xstart.Ystart.delx.dely : integer;

testgrOk:boolean:

As Ratio : real;

Xmid.Ymid : integer;

xin,yin.dx,dy:integer;

Xasp.Yasp-.word;

begin [radarl]

if Startgraphics then begin [check out whether the proper

graphic device is already installed]

[** This following code segment will present author name and stand-by the

user for the radar screen **]

SetTextStyle(l.Horizdir.l);

OutTextXY(M0,150,'N EVZAT GU LESEN PRESENT S);

Line(130,173,5S5,173);

delay(lOOO);

ClearviewPort;

SetTextstyle(0,Horizdir,0);

Sound(500);

delay(120);

NoSound;

radar_screen: delay(IOOO);

ClearViewPort;

84

Xmid := GetMaxX div 2;

Yniid := GetMaxY div 2;

xin := xmid+ 240:

yin : = ymid - 130:

dx: = 50: dy: = 35;
counts(xin,yin,dx,dy,9);

k: = 0:

radar_screen;

repeat

xin : = Xmid + 240;

yin : = ymid - 130;

dx:= 25; dy := 15;

[following two case statements will show the number of the full rotations

of the radar has already done]

case kten of

1: do_one(xin,yin,dx.dy): 2:do_two(xin,yin.dx,dy);

3:do_three(xin.yin.dx.dy); 4:do_four(xin,yin,dx,dy);
5:do_five(xin,yin,dx,dy>: 6:do_six(xin.yin,dx,dy);

7:do_seven(xin.yin.dx.dy); 8:do_eight(xin.yin,dx.dy);

9:do_nine(xin.yin.dx,dy); 0:do_zero(xin.yin,dx,dy):

end:

delay(500);

xin : = xmid - 240;

yin : = ymid - 130;

dx := 25; dy := 15:

case total of

1: do_one(xin,yin.dx,dy) ; 2: do_two(xin,yin,dx,dy);

3:do_three(xin,yin,dx.dy); 4:do_four(xin,yin,dx,dy);
5: do_five(xin,yin,dx.dy); 6: do_six(xin,yin,dx,dy);

7:do_seven(xin,yin.dx,dy); 8:do_eight(xin,yin,dx,dy);

9:do_nine(xin,yin,dx,dy); 0:do_zero(xin,yin,dx,dy);
end;

delay(500);

Rectangle(l.l.GetMaxX-l.GetMaxY-l);

radar_screen;

85

OwnShipPlot;

if k > = 1 then begin

Rectangle(l,l Get\laxX-l,GetMaxY-l):

TargetShipplot(TargetShipl,TargetShip2,Target.shipcount);

delay(lOO);

end;

[** stan sweeping radar screen , as in real life radar]

sweep_screen 1;

s\veep_screen3;

radar_screen; [show radar screen back]

OwnShipPlot; [plot your own ship employing data in procedure execute]

Rectangle(l.l,GetMaxX-l.Get\laxY-l);

[plot the Target employing data from procedure execute]

TargetShipPlot(targetShipl.TargetShip2,Target,Shipcount);

delay(lOO);

[sweep the secondary half of the radar screen]

sweep_screen2;

swecp_screen4:

OwnShipplot; [plot your own ship back in)

if k > 1 then begin

RecTangle(1,1 .GetMaxX-1 ,GetMaxY-1):

TargetShipPlot(TargetShipl.TargetShip2,Target,shipcount);

dclay(lOO):

end:

k: = k+ 1; I increment the value of full rotations of the radar]

kten := k mod 10;

ifk< 100 then

total: = k div 10

else if (k> = 100) and (k< 1000) then

total: = kdiv 100

else total := kdiv 1000;

until KeyPressed;

end [if graph device is ok]

else begin [if there is no graphic device in the working computer

86

program will halt]

Closegraph:

Haiti 1):

end: [else]

CloseGraph: [Task is done , go back to Text mode]

end: [radar 1]
****•*••***••• EXD OF PROCEDURE RADAR1 •*••*******•***•*•**]
* * * * * * * * * ?'. ************************** .-M

*************** END OF ALL THE RADAR PACKAGES ***********•**]
:f*««*****S************* r\Q \1YSHIP »••••••••••••»•»»»•••••••I

************************************* *******************************!

This is one of the main module in the package. Procedure do_myship handles all

the calculations and solutions calling procedure execute if the user wants to track other

targets.]

procedure do_myship< var quit:boolean:

var change_function:boolean);

var

i: integer:

Ch.Ch 1 .Ch2.Ch3.Ch4:char:

see_radar.no_rnore_myShip : boolean:

begin

quit : = false;

see_radar: = false;

no_more_myShip: = false:

change_function: = false:

[*2CM)*] repeat

timer.zaman(25.11,Ch); Ch := ReadKey;

if Ch = *=13 then begin

gotoxy(25,13):

ReadlOwnShip. speed):

gotoxy(29.13); write(knots');

cotoxy(27.15);

Read(OwnShip.course):

gotoxy(30.15); write(chr(2-4S));

87

-AD-Ä2TJ4 885

UNCLASSIFIED

MICROCOMPUTER APPLICATIONS UITH PC LAN (LOCAL AREA
NETWORK) IN BATTLESHIPSiU) NAVAL POSTGRADUATE SCHOOL
HONTEREV CA N GULESEN OEC 88

F/G 12/5

27T

NL

•••••11IIIII
RSS5

10 11-8 12-5

11-25

2-2 ^s= BIS» la
1-1 tm I-

IM 111-6

end;

ShipCountl : = 0;

[*• START GETTING FIRST POSITION OF TARGET

[50] repeat

shipcountl : = shipcountl + 1;

timer.zaman(25,11 ,Ch);

Ch:= ReadKey;

if Ch = #13 then begin

gotoxy(25,23);

write(shipcount 1:4);

gotoxy(6S,7);

read(TargetShipl[shipcount l].relative_bearing):

gotoxy(71.7): write(chr(24S));

gotoxy(67.9):

read(TargetShipl [shipcountl].range);

end;

timer.zaman(25,11 .Ch);

Ch: = ReadKey;

if Ch =#13 then begin

TargetShipl[shipcountl].minl: = Min;

TargetShipl[shipcountl].Hourl: = Hour;

TargetShipl[shipcountl].secl: = Sec;

time\vrite(TargetShipi [shipcount l].hourl,

TargetShipl [shipcountl].mini,

TargetShipl [shipcount 1].seel ,65,11);

gotoxy(27.21); read(Chl);

Chi:-ReadKey;
gotoxy(27,21); write(Chl);

nomore_ships : = ((Chi = #110) or (Chi = #78));

end;

if not(nomore_ships) then begin

gotoxy(68,7);write(' ');

gotoxy(67,9);write(' ');

gotoxy(65,ll); \vrite(' ');

end;

until nomore_ships: [** LOOP TO 50 **]

[*• START READING SECONDARY POSITION OF THE TARGETS

I
shipcount2 : = 0;

[100] repeat

shipcount2: = shipcount2 + 1;

gotoxy(25.23);

writeC ');

gotoxy(25,23);

write(shipcount2);

timer.zaman(25.11 ,Ch);

Ch: = ReadKey;

if Ch = #13 then begin end ;

GetTime(Hour.min,sec.ScclOO);

TargetShip2[shipcount2].hour2: = Hour;

TargetShip2[shipcount2J.min2 := min ;

TargetShip2[shipcount2].sec2 := sec;

gotoxy(6S.13):

read(TargetShip2(shipcount2].relative_bearing);

gotoxy(71.13); write(chr(2-lS));

gotoxy(67,15);

read(TargetShip2[shipcount2]. range);

time\vrite(TargetShip2(shipcount2].hour2,

TargetShip2|shipcount2].min2,

TargetShip2[shipcount2].sec2,55,17);

delay(lOO);

ifshipcount2 < shipcountl then begin

gotoxy(68,13);

writeC ');

gotoxy(67,15);

write(' ');

gotoxy(65,17);

writeC '):

89

end;

until (shipcountl = shipcount2); [** LOOP TO 100 **]

r************************* pvpPl "T'IO\ *******************************1

[***] for i := 1 to shipcount2 do [***j

[***] [* find timedifference for each target *] [***]

Target[i].dtime : =

deltatime(TargetShipl[i].hour l,TargetShipl[i].mini,

TargetShipl[i].secl, TargetShip2[i].hour2,TargetShip2[i].min2,

TargetShip2[i].sec2):

xl: = 65 ; yl : = 2;

timcr.zaman(25.1 l.C'h);

ifCh=r=13 then

execution_signal(x 1 .y 1);

[* if return hit then start calculation for each

signaling that the computer executing *]

for count: = 1 to shipcount2 do

execute(TargetShip 1 .TargetShip2,OwnShip,Target,count);

Continue : = true;

[*•*] done: = false; [***]

[***] shipcount: - 0; [***]

[Ch2: = *77;]
r ******* * * ** ** * * * * * * * * * ****** * * * * * * * * * * * * * * * * * *l

[150] repeat

\vindovv(1,1,80.25);

gotoxy(l,22);

write(£199);

done: = false;

shipcount := shipcount + 1;

timer.zaman(25.11 ,Ch);

Ch: = ReadKey;

if Ch = #13 then begin end;

gotoxy(25,23);

\vrite(' ')'•

90

gotoxy(27,23):

write(shipcount);

gotoxy(67,21);

\vrite(' ');

gotoxy(27,21);

\vrite{' ');

gotoxy(61,19);

\vrite(Target[shipcount].speed:8:2,'knots');

if ((Target[shipcount].course < 100) and

(Target[shipcount).course > • 10)) then begin

gotoxy(67,21);

\vrite('0'.Target[shipcount].course:2:0,chr(248));

end

else if (Target[shipcount).course < 10) then

begin

gotoxy{67.21);

write('00'.Target[shipcount].course:l:0,chr(248))

;end

else

begin

gotoxy(67.21):

write(Target[shipcount].course:3:0.chr(248));

end:

gotoxy(63.23);

\vrite(' ');

gotoxy(63,23);

write(Target[shipcount].MCR :6:0);

if Target[shipcount].air then

begin

xl := 28; yl := 23;

air_signaKxl,yl);

gotoxy(21,23);\vrite(shipcount:2);

end;

gotoxy(21.23);

91

\vrite(shipcount:2);

if not(Target[shipcount].air) then

begin

gotoxy(2S.23);

\vrite(' ');

end;

if Target[shipcount].collision then

begin

xl := 63; yl := 23;

collision_signal(xl,yl,Target,shipcount);

end;

if shipcount < shipcount 1 then begin

for i: = 1 to 2 do begin

gotoxy(5.21);

writef ');

delay(250);

gotoxy(5,21);

write('NEXT TARGET');

delay(250);

end:

gotoxy(27,21);

read(Ch2);

Ch2: = ReadKcy;

Continue:-(Ch2-#13) or (Ch2 = *89) or (Ch2-#121);

end

else begin

done := true;

gotoxy(1,22); write(fc 199);

end

until ((done) or (not(Continue))); [* LOOP TO 150 *]

gotoxy(5,21);

write('MORE SHIPS ');

gotoxy(27.21);

Read(Ch3):

92

Ch3:=ReadKey;

No_more_myship: = (Ch3 = #78) or (Ch3 = #110);

if No_more_myShip= true then

begin

gotoxy(28,21): write(Ch3):

gotoxy(2Sf19);

Read(Ch4); Ch4:= ReadKey;

Change_function: = (Ch4 = #89) or (Ch4 = #121); [y]

quit:- (Ch4-#8i) or (Ch4 = #113); [q]

see_radar: = (Ch4 ==114) or (Ch = #82);

end

else begin Change_function := false;

quit := false;

end;

if see_radar then

radar l(shipCount):

Initialize_Screen:

until (Change_function) or (no_more_\lyship) or quit;

[* LOOP TO 200 *]

my\vindo\v(\vhich_ship_ch,quit);

end; [procedure do_o\vnship]

[*****•******** END OF PROCEDURE DO_OWNSHIP ****•********»*]

I**************** FUNCTION TIME TO STRING *****»*******•*******]
r f. .J» »J. jj. .J. J. »*; ./; V; .*. J; J. rf. V. »«j /; y. rf; Jt »% ;|; a/- * J. V« a*j jj; V; jj. rf. jf. ••; «J. jj; a». ,/. j», rf, j». ,*. J, rf. J, J. ,». J» J. J. J. J. ,-, J. J, J, J, .-. J. J; V. „•, jf. lit lfc ifc |)| A A !*' 1

[This function gets the starting time and the given time difference and returns the

string value that represents the total value of the starting time and the timedifference

]
function time_to_string(firsthour.firstmin,nrstsec:word;

totaltime : integer) : string;

var

lasthour.lastmin.lastsec.

tcmphour.tcmpmin.tempsccinteger ;

93

firstinthour Jirstintmin.firstintsec : integer;

laststrhour.laststrmin.laststrsec : string[2]:

laststring:string[S];

see_radar:boolean;

begin

firstinthour : = firsthour;

firstintmin : = firstmin;

firstintsec : = firstsec; [* assignment statements for type compatibility

[* start applying what software methodology course taugth us *]

temphour : = totuhime div 3600;

totaltime := totaltime mod 3600; [update totaltime difference]

tempmin : = totaltime div 60;

tempsec := totaltime mod 60;

lasthour : = temphour + firstinthour;

lastmin:= tempmin + firstintmin;

lastsec : = tempsec + firstintsec;

if lastsec > 59 then begin

lastsec : = lastsec - 60;

lastmin := lastmin + 1;

end;

if lastmin > 59 then begin

lastmin : = lastmin - 60;

lasthour := lasthour + 1;

end:

if lasthour > 23 then lasthour := lasthour mod 24;

Str(lastsec.laststrsec);

if length(laststrsec) < 2 then

laststrsec: = concat('O'.laststrsec);

Str(lastmin,laststrmin);

if length(laststrmin) < 2 then

laststrmin: = concat('0',laststrmin);

Str(lasthour.laststrhour);

if length(laststrhour) < 2 then

laststihour: • concat('0',laststrhour);

94

laststring: = concat(laststrhour,':'.laststrmin.':',laststrsec);

timc_to_string : = laststring;

end; [procedure time_to_string]
(***•***»*•«*** END OF PROCEDURE TIME_TO_STRING *************]

r«*««««**««««««««-.*««*«*«* T-\Q QI'inpSHIP ****************•****#****•]

r * * .t & * * * * * * * £ * * * * * * * * * * * * * * * A * * ****«***#*****.•!! * « *]

[This is also one of the main procedure of the software package. This procedure is

called by the main program and executes as long as the user wants to do navigational

calculations to figure out what his her own ship data should be in order to get some

specific location in a given time where is relative to the commanding ship. The procedure

parameters are quit which tells the computer that the user wants to quit, and

changejunction which directs the screen data entry location to do another type of sol-

utions of which software package has been implemented for.]

procedure do_guideship{var quit: boolean : var change_function : boolean);

var NextChar.Chl,Ch2.Ch3 : char ;

see_radar, Nomore_pivotShip : boolean;

begin [do pivot ship 1

quit: = false:

Change_function: = false:

see_radar: = false;

Nomore_pivotship: = false;

repeat

window(1.1.80.25);

gotoxy(1-4.5): write(' '): [Start with changing window header]

gotoxy(14,5); writefPIVOT SHIP DATA ');

gotoxy(52.5); writef '):

gotoxy(53,5); writef OWN SHIP DATA ');

gotoxy(43.19); write('OWNSHIP SPEED ');

gotoxy(43.21); write('OWNSHIP COURSE);

[repeat]

window(1,1,80,25);

gotoxy(25,13);

ReadfOwnShip.speed):

95

gotoxy(29,13);

writ e('knots');

gotoxy(27,15);

Read(OwnShip. course);

gotoxy(30,15) ;

write(chr(24S)).

timer.zaman(25,1 l.Ch);

Ch: = ReadKey;

if Ch = = 13 then begin

gotoxy(6S.7);

Read(TargetShipl[l].relative_bearing);

gotoxy(71.7);

write(chr(24S));

delay(lOO);

gotoxy(67.9);

Read(TargetShipl[l]. range);

TargetShipl[l].minl := Min;

TargetShipl[l].hourl := Hour;

TargetShipl[l].secl := Sec:

end;

[myship became target in solution of the problem]

time\vrite(TargetShip 1 [1].hour 1 .TargetShipl [1].min 1,

TargetShipl[l].secl.65.11);

timer. zaman(25,11 .Ch); Ch: = ReadKey;

if Ch = £13 then begin

gotoxy(68,13);

Read(TargetShip2[l].relative_bearing);

gotoxy(71,13);

\vrite(chr(248));

delay(lOO);

gotoxy(68,15);

Read(TargetShip2ffll".range);

gotoxy(4,23); \vrite(' ');

gotoxy(4,23); \vrite(chr(228),'t'):

96

gotoxy(24.23); \vritc(' ');

gotoxy(24,23); Read(totaltime):

gotoxy(30,23); \vrite('seconds');

end:

Target[l].dtime := totaltime:

timer.zaman(25,ll.Ch); Ch := ReadKey;

if Ch = #13 then

begin

xl := 65; yl :- 2;

execution_signal(x 1 ,y 1):

count := 1:

execute(TargetShipl.TargetShip2.0vvnShip.Target,count);

end:

gotoxy(64.17);

write(time_to_string(TargetShipl[l].hourl,

TargetShipl[l],min l,TargetShipl[l].seel,totaltime));

gotoxy(61.19);

\vrite(Targetflj.speed:8:2.'knots');

if ((Targetf 1].course < 100) and (Target! 1].course > = 10)) then

begin

gotoxy(67,21);

\vrite('0',Target[l].course:2:0,chr(248));

end

else if (Target[1).course < 10) then

begin

gotoxy(67,21);

write('00',Target[l].course:l:0,chr(248));

end

else begin

gotoxy(67,21);

write(Target[l].course:3:0,chr(248));

end;

gotoxy(63,23);

write(' '):

97

gotoxy(63.23):

write(Target[l].MCR:6:0);

[if solution tends to collision then alarm ..! , given relative

position is wrong .. !, need better C.O.'s]

[* if collision case wanted to be implemented in this type of solution

then the following code segment will be taken out of the comment

marks *]

if Target[1].collision then begin

xl := 63; yl: = 23;

count: = 1;

collision_signal(x 1 ,y 1 ,Target.count j;

end:
J * ft $ # ft .-;:::-. $ g # fc $ $ $ 4c $ $ * $ * * * * * * * * * * $ # # # * * # :;-. * -•{; * * * £ * * * # $ * 1

timer.zaman(25,ll,Ch); Ch:= ReadKey;

if Ch = # 13 then begin end;

gotoxy(27,21); Read(XextChar);

NextChar: = ReadKey;

nomore_pivotship : = ((NextChar = #113) or (NextChar = #81) or

(NextChar = #110) or (NextChar = #78)); [q, n]

if nomore_pivotship = false then

begin

change_function: = false:

quit: = false;

end

else

begin

gotoxy(28,19);

Read(Ch3); Ch3:= ReadKey;

Changejunction := (Ch = #89) or(Ch=#121);

quit := ((Ch3 = #81)or(Ch3 = #113));

see_radar: = ((Ch3 = *82) or (Ch3 = # 114));

if see radar then

98

radarl(l); Initializc_SCreen:

end;

until quit or change_function or nomore_pivotship;

mywindow(which_ship_ch,quit);

end; [end of pivot ship positioning solution]

[******** END OF PROCEDURE DO_GUIDESHIP ***•****•****]

[****•*** PROCEDURE THANKS FOR USING CIC •*•*******•*]

This procedure will print out a 'good_bye'message to the user as the user exits the

program. Procedure does not have any parameter and only uses Crt and Operating sys-

tem timing routines. It's an attempt to make computers more sympatic to whom use it.]

procedure Thanks_for_Using_Cic;

var

i: integer :

begin

for i: = 1 to 2 do begin
ClrScr;

Crt.SoundpO):

delay(250);

Crt.NoSound;

gotoxy(18.12);

write(THANK YOU FOR USING C. I. C. ');

delay(lOOO);

end;

end; [procedure thank_for_using_cic]

[*********• END OF PROCEDURE THANKS FOR USING CIC **********]
\0000 f.: 0 * 00000000000000000000&0&&00000000000&00000000000000000000000000\

procedure main ;

bcein i •***« main **««* ,

99

quit: = false:

Te\tBackground(4);

repeat

mvwindow(which_ship_ch.quitV.

while not(quit) do begin

if Let_me_do_myship(\vhich_ship_ch) then begin

do_myship(quit,change_function);

if change_function then do_guideship(quit,change_function)

end

else begin

do_guideship(quit,change_function);

if change_function then do_myship(quit,change_function);

end;

end; [while]

until quit;

Thanks_for_using_cic;

end:

end.

100

unit Datefind:

interface

uses Crt.Dos:

type

xcoord = 1..S0;
• ycoord = 1..25;

DateTime = record

Year.Month.Day:\vord;

end;

var

daystring:string[9];

DT: DateTime:

Year.Month.Day.DayOfWeek : word;
procedure tarih(x:xcoord ; y:ycoord);

implementation

procedure tarih(x:xcoord ; y:ycoord);

begin

GetDate(Year,Month.Day.DayOfWeek):

case DavofWeek of

1: daystring

2: daystring

3: daystring

4: daystring

5: daystring

6: daystring

0: daystring

end;

window(1.1,80,25):

gotoxy(x,y);

write(daystring,' ',Month,'/'.Day,'/'.Year);

end;

end.

= MONDAY ;

= TUESDAY';

= WEDNESDAY';

= THURSDAY':

= FRIDAY':

= SATURDAY';

- SUNDAY';

101

Unit timer;

interface

Uses Dos.Crt:

type

DateTime = record

Year,Month,Day,Hour.Min,Sec : word;

end;

xcoord= 1..S0:

ycoord= 1..25;

var

Ch:char;

Time : Longlnt:

DT : DateTime;

Hour.Min.Sec.SeclOO :\vord;

Vear.Month.Day.DayOAVeekrword:

procedure zaman(x:xcoord;y:ycoord ; var Ch:char);

implementation

procedure zaman(x:xcoord;y:ycoord ; var Chrchar);

begin

gotoxy(x.y);

repeat

GetTime(Hour. Min.Sec.Sec 100);

gotoxy(x,y);

if {(Sec < 10) and (Min > = 10)) then

\vrite(Hour,':',Min.':0',Sec.':'.SeclOO)

else if ((Sec > - 10) and (Min < 10)) then

write(Hour,':0,Min,':',Sec,':',SeclOO)

else if ((Sec < 10) and (Min < 10)) then

\vrite(Hour,':0',Min,':0',Sec,':\SeclOO)

else write(Hour,':',Min,':',Sec.':',SeclOO);

until KeyPressed;

end;

end.

102

unit dml;

[* This unit is called by unit dmS. It displays the ship general

information and draws the ship in graphics mode of the screen *]

interface

uses Graph,Dos,TestGr;

const

CakmakShip : array [1..7] of PointType = ((x:45 ; y.100),

(x:360 ;y:100),

(x:675 ; y:90),

(x:660 ;y:150),

(x:215 ;y:150),

(x:50:y:l30).

(x:45 ;y:100));

procedure main;

implementation

procedure main;

begin

if not Test_Graph_Device(GraphDrivcr,ErrorCode,GraphMode) then

begin

\vritcln(Program aborted');

Halt(l);

end

else

begin

Line(657,92,657,150);

Line(630,93,630,150);

Line(585,94,585,150);

Line(540,95,540,150):

Line(510,96,510,150);

Line(480,97,480,150);

Line(420,98,420,150);

Line(360,100,360,150);

Line(345.100.345.150)

Line(285.100.285,150)

103

Line(215,100,215,150);

Line(lS0.100.1S0.145);

Line(150.100.150.142);

Lined 15.100.115.137);

Line(75,100.75.133);

Line(60,100,60.131);

Line(215,150,130,150);

Line(130,150,120,140);

DrawPoIy(SizeOfi;CakmakShip) div SizeOf(PointType),CakmakShip);

OutTextXY(115,90,'MAIN DECK');

OutTextXY(10,200,'Length Overall = 119.02 m.');

OutTextXY(10,220,'Length Between Perpendiculars = 116.73 m.');

OuttextXY(10.240,'Breadth, extreme = 12.46 m.');

OuttextXY(10,260,'Depth. Main Deck at Side @ = 6.97 m.');

OuttextXY(10.280.'Depth. Main Deck, Lowest Point = 6.55 m.');

OutTextXY(420,200.Tuel Oil = 723.23 tons');

OutTextXY(420,220,'LubricatingOil = 11.12 tons');

OutTextXY(420,240,'Potable Water = 67.38 tons');

OutTextXY(42u,260,'Reserve Feed Water = 71.07 tons');

OutTextXY(420.2S0.'Displacement = 3543.60 tons');

OutTextXY(55.160.'204);

OutTextXY(105,160,'lS2);

OutTextXY(205,160,'14S);

Ou:TextXY(335,160,'l 10 A&F);

OutTextXV(475,160.'72'):

OutTextXY<575.160.'33');

OutTextXY(654,160,'6);

Readln;

end;

CloseGraph;

end;

end.

104

unit dm2;

[* this unit is called by unit dmS and used for draft functions *]

interface

uses Crt.Graph.Dos,TestGr;

var

xl.yl,x2,y2,x3.y3.y4,i: integer;
Aft_draft,For_draft:real;

fac,slope : real;

Xasp.Yasp:\vord;

cokor:vvord;

same : boolean;

s3.s4:string;

procedure dmscreen(sl,s2:string; var Aft_draft:real ; var For_draft: real);

procedure main:

implementation

procedure dmscreen(sl.s2:string;var Aft_draft:real; var For_draft:real);

[* si and s2 are strings are displayed in the screen window and output

parameters Aft_draft and For_draft are read by the procedure *]

var i: integer;

begin

clrscr;gotoxy(25.10);

for i:= 1 to 31 do begin

write(Chr(205));

gotoxy(25 + i,10);

end;

gotoxy(56,10); write(chr(187));

gotoxy(56,ll);

for i: = 1 to 5 do begin

write(Chr(186));

gotoxy(56,10 + i);

end:

gotoxy(56.14);write(chr(188));

105

goto\y(55.14);

for i:= I to 31 do begin

write(Chr(205)):

gotoxy(55-i,14):

end;

got oxy(24.14);\vrite(chr(200));

gotoxy(24.13);

for i: = 1 to 5 do begin

write(chr(186));

gotoxy(24,14-i);

end;

gotoxy(24.10);

\vrite<chr(20I));

gotoxy(24,12); \vrite(chr(199));

gotoxy(25.12);

for i: = 1 to 24 do

write(chr(196));

\vrite(chr(197));

for i: = 1 to 6 do

write(Chr(196));

write(Chr(lS2));

gotoxy(49,10);

\vrite(chr(209));

gotoxy(49,ll);

for i: = 1 to 4 do begin

write(chr<179));

gotoxy(49,10 + i);

end;

gotoxy(49,14); write(Chr(207));

gotoxy(26.11); write(sl);

gotoxy(26,13); write(s2);

gotoxy(50,ll); read(Aft_draft);

gotoxy(50,13); read(For_draft);

end; [procedure dmscreen]

106

procedure main:

begin

S3:-' AFTER DRAFT MARK':

s4:- FORWARD DRAFT MARK :

dmscreen(s3,s4,Aft_draft.For_draft);

if not Test_Graph_Device(GraphDriver,ErrorCode,GraphMode) then

begin

\vriteln(Program aborted');

Halt(F);

end

else

begin

GetAspectRatio(Xasp.Yasp);

yl :- (Round((17-Aft_draft)*40) + 60):

y2:= (Round((17-For_draft)*40) + 60);

same:= abs(yl-y2)< 10:

SctTextJustify(CenterText.CenterText);

SetTextStyle(1 .Horizdir.4):

for i:= 1 to 3 do

begin

OuttextXY(GetMaxX div 2,GetMaxY div 2,'TCG. MF. Cakmak');

Delay(lOOO):

ClearDevice;

end;

OutTextXY(GetmaxX div 2,15, DRAFT DIAGRAM AND FUNCTIONS');

SetTextStyle(2,0,4);

OutTextXY(50,50,'AFTER DRAFT MARKS');

OutTextXY(310,40,'DISPLACEMENT(Tons)');

OutTextXY(440,40,*IMMERSION (Tons Inch)');

OutTextXY(650,50,'FORWARD DRAFT MARKS');

Line(60,60,60,340);

Line(320.47,320,340):

Line(450.60.450,340);

107

Linc(660.60.660,340);

v3 : = 60;

for i: = 1 to 30 do begin

Line(55.y3.60.y3);

Line(665,y3,660,y3);

if y3 mod 40 = 0 then begin

Line(50,y3,60,y3);

Line(670,y3,660,y3);

end;

y3: = y3+lO;

end:

y3:= 47;

for i: = 1 to 22 do begin

Line(3L\y3.320.y3);

if i mod 5 = 1 then

Line(310.y3,320,y3);

if i<6 then fac : = 11.4;

if((i> =6) and (i< 12)) then fac := 11.43;

if((i> = 12) and (i< 18)) then fac: = 11.47

else fac:= 11.50;

y3: • Round(y3 + fac);

end;

OutTe\tXV(290,105,'4000);

OutTextXY(290,167.'3500);

OutTextXY(290,220.'3000');

OutTextXY(290,2S0,'2500');

Line(450,79,455,79);

OutTextXY(470,75,'29.0');

Line(450,120,455,120);

OutTextXY{470,115/28.8');

Line(450,146,455,I46);

OutTextXY(470,142,'28.6');

Line(450,175,455,175);

OutTextXY(470,171,'28.4);

Line(450,200,455,200);

108

OutTextXY(470.197.'2S.2):

Line(450?224,455,224);

OutTextXY(470,220.'2S.O');

Line{-450.245.455.245):

OutTextXY(470.242.'27.8');

L.ine(450.262.455,262);

OutTextXY(470,25S.'27.6');

Line(450,276,455,276);

OutTextXY(470,272,'27.4');

Line(450,288,455,288);

OutTextXY(470,2S4,'27.2');

Line(450.296,455,296);

OutTextXY(470.292.'27.0');

OutTextX Y(40.100.'X\T);

OutTextX Y(40,140.X V);

OutTextXY(40.1S0/XIV);

OutTextXY(40.220,'XIir);

OutTextXY(40.260.'XIl');

OutTextX Y(40.300:XI');

OutTextXY(40.340.'X'):

dclay(IOOO):

if not same then

Line(60.yl.660.y2)

else begin

cokor:= 15;

xl: = 60 :

x2:= 660 :

y4: = yl;

slope: = (y2-yl)'(x2-xl);

while xl < =x2 do

begin

Put Pixel(x 1 ,y 1 ,cokor);

xl: = xl + l;

yl:= Round((slope*xl)*(Xasp.

delay(lO):

OutTextXY(6S0,100.'X\T);

OutTextXY(680,140,'XV);

OutTextXY(6S0,180,'XIV);

OutTextXY(680,220,'XIII');

OutTextXY(6S0,260.'XII);

OutTextXY(680,300.'XI');

OutTextXY(6S0r340,'X');

Yasp)) + y4;

109

end:

end:

Readln;

end:

Readln:

CloseGraph;

end;

end.

110

unit dm5:

[• this unit is called by unit dmS and used for liquid loading

diagrams of the ship *]

interface

uses Graph,Dos,Crt,TestGr;

const

maxtank =31;

var

i.j:integer;

foundiboolean;

capacity.degrees,aft_draft,for_draft,aframe,fframe:string[7];

tankname:string[7];

explanation : string[25]:

s : array[1..maxtank. 1..7] of string[7];

MvChr.char;

procedure main;

implementation

procedure main;

begin

s(.l.l.):='C-12F s(.l,2.): •'38'; s(.l,3.): = •2.0';

s(.l.4.):='-2'; s(.1.5.): = ' + 4'; s(.1.6.):=' 170';

s(.2.1.):='C-HF' s{.2.2.): = '37'; s(.2,3.): = '2.0';

s(.2.4,):='-2'; s(.2.5.): = ' + 4': s(.2,6.): = ' 170';

s(.3.1.): = 'C-10F' s(.3.2.): «'54': s(.3.3.): = = '2.9';

s(.3.4.): = '-2'; s(.3.5.): = ' + 5': s(.3,6.): = •157';

s(.4.1.): = 'C-9F'; s{.4,2.): = '55'; s(.4,3.): = = '2.9';

s(.4.4.):='-2'; s(.4.5,): = ' + 5'; s(.4,6.): = '157';

s(.5,l.): = 'C-8F'; s(.5.2.): = '24'; s(.5,3.): = = '1.4';

s(.5,4.): = '-1.0'; s(.5,5.): = '+2'; s(.5,6.): = '152';

s(.6;l.): = 'C-7F'; s(.6,2.): = '24'; s(.6,3.): = '1.4';

s(.6.4.): = '-r; s(.6.5.): = ' + 2'; s(.6,6.): = '152';

s(.7,l.): = 'C-4F'; s(.7,2.): = 'ii'; s(.7,3.): = ' '0.8';

s(.7.4.):='0'; s(.7,5.): = '•!'; s(.7.6.): = '148';

s(.8.1.):='C-6F'; s(.8,2.): -'61'; s(.8,3.): = = 0.0';

m

.8.4.): =

.9.1.): =

.9.4.): =

0.1.): =

0.4.): =

1,1.): =
1,4.): =

2.1.): =

2.4.): =

3.1.): =

3.4.): =

4.1.): =

4.4.): =

5.1.): =

5.4.): =

6.1.): =

6.4.): =

7.1.): =
7.4.): =

8,L):'

S.4.): =

9.1.): =

9.4.): =

20.1.): =

2M.4.): =

21.1.): =

21,4.): =

22.1.): =

;(.22,4.):

.23.1.):

23,4

.24,1

.24,4

.25.1

.25,4 •):

'-2'; s(.S,5.): = ' + 5':

'C-1F'; s(.9,2.):-'51';

'•V: s(.9,5.): = ' + 4-.

= C-501J': s{.10.2.):='21':

= '-1'; s(.10.5.): = ' + 2';

= 'B-9.5F'; s(.ll,2.):='3S';

= ' + 2'; s(.ll,5.): = '+l';

= 'B-9.25F';s(.12.2.):='60';

= ' + 3'; s(.12,5.): = ' + 2';

= 'B-10.5F'; s(.13,2.): ='39':

= ' + 2'; s(.13.5.): = '+l';

= 'B-9.75F':s(.14.2.):='19';

•*+l'; s(.14.5.): = '+l';

= 'A-50SF'; s(. 15.2.):= '16';

= ' + 2': s(.15,5.):='-l';

= A-507F': s(.16,2.): = '15':

= ' + 2'; s(.16,5.):='-l':

= 'A-510F': s(.17,2.):='14';

= ' + 2': s(.17.5.):='0':

= 'A-509F'; s(.18.2.):= '14';

= ' + 2'; s(.lS.5.): = '0';

= 'A-506F'; s(.19.2.):='19':

= ' + 3': s(.19.5.): = '-l':

= 'A-505F'; s(.20.2.): ='12';

= ' + 2': s(.20.5.): = '-l':

= 'B-14W; s(.21.2.):='19';

= '0'; s(.21,5.): = '+l';

= 'B-12W; s{.22,2.): = '21';

-'+!'; s(.22,5.): = '+l'

= 'B-11W; s(.23.2.):='21'

•'+!'; s(.23,5.):='+l'

= 'B-13W; s(.24,2.): = '19'

= '0'; s(.24,5.): = '+l';

= 'B-I0W; s(.25,2.):=16';

= '+!'; s(.25.5.):='0';

s(.8.6.): = '152';

s(.9.3.):='0.0';

s(.9.6.):='14S':

s(. 10.3.): = '0.0':

s(. 10.6.): = '157';

s(.ll,3.): = '2.2';

s(.ll,6.):='110F';

s(.12.3.):='0.0';

s(.12,6.): = '110F';

s(. 13,3.): = '2.5';

s(.13,6.): = '110F';

s(. 14.3.): ='0.0;

s(. 14.6.): = 'HOG';

s(. 15.3.): ='0.7';

s(. 15,6.): = '60';

s(. 16.3.): = '0.7';

s(. 16.6.): ='60':

s(.17.3.):='0.7';

s{.17.6): = '66';

s(.lS.3.): = '0.7';

s(.lS.6.): = '66';

s(. 19.3.): ='0.3';

s(. 19,6.): = '48';

s(.20.3.): = '0.2';

s(.20.6.): = '48':

s(. 21,3.): = '1.7';

s(.21,6.): = '120.5';

s(.22,3.): = '1.8';

: s(.22,6.):='110A';

s(.23,3.)

s(.23,6.)

s(.24,3.)

= '1.8';

= '110A';

= '1.7';

s(.24,6.): ='120.5';

s(. 25,3.): = '1.2';

s(.25.6.):='82.5';

n:

s(.26,l.): = 'B-S\V;

s(.26.4.): =

s(.2~.l.): =

+ 1*;
B-7W;

+ 1*;
B-9W";

+ 1';

C-5F;

0';

s(.27.4.): =

s(.2S,l.V.=

s(.2S.4.): =

s(.29,l.): =

s(.29,4.): =

s(.30,l.): =

s(.30.4.): =

s(.31.1.): =

s(.31.4.): =

s(.1.7.):='lS2':

s(.4.7.):='170':

s{.7.7.):='152';

s(. 10.7.): = '170':

s(. 13.7.):= HOG';

s(.16.7.): = '66':

s(. 19,7.): = '60':

s(.22.7.):= '120.5';

s(. 26.2.):= '13'; s(.26.3.)

s(.26.5.):= '0'; s(.26.6.): =

s(.27.2.): ='13'; s(.27.3.):^

s(.27.5.): = '0': s(.27.6.): =

s(.28,2.): = '16'; s(.2S.3.)

s(.2S.5.):='0'; s{.2S.6.): =

s(.29.2.):='5'; s(.29,3.): =

s(.29,5.): = '0'; s(.29.6.): =

A-4F';

+ 6';

'A-3F'; s(.30,2.): = '55'; s(.30f3.):

+ 7': s(.30.5.):='-2'; s(.30.6.): =

s(. 31.2.):= '47'; s(.31,3.):

s(.31.5.): = '-l': s(.31.6.): =

s(. 2.7.): = '182': s(.3.7.)

s(.5.7.):='157'; s(.6.7.)

s(.8.7.):='157'; s(.9.7.)

s(. 11.7.):= HOG': s(.12,7.)

s(.I4.7.):='110A'; s(.15.7.

s(. 17.7.):= '72': s(.lS.7.): =

s(.20.7.): = '60'; s(.21.7.): =

s(.23.7.):='120.5'; s(.24.7.):

s(.25.7.): = '92.5'; s(.26.7.): = 82.5': s(.27.7.): =

s(.2S,7.): = '92.5': s(.29.7.):='152'; s(.30,7.): =

s(.31.7.): = '72.5';

repeat

clrscr:

gotoxy(20,12); write(Chr(201»;

for j:= 1 to 39 do

\vrite(chr(205));

\vrite(chr(187));

gotoxy(60,13): write(chr(186));

goto\y(60,14); write(chr(188));

gotoxy(21,14);

for j:= 1 to 39 do

\vrite(chr(205));

gotoxy(20.14); \vrite(chr(200));

= '0.9';
: '72';

= 0.9';

72':

= 1.2';

"'82,5';

= '0.4';

148';

= '0';

= '60';

= '0';

= '66';

170';

157';

152';

= '110G';

): = '66';

'72';

130.5 ;

= 130.5';

= '82.5';

• '66';

113

gotoxy(20.13): write(chr(lS6)):

gotoxy(21.13): write(' ENTER THE NAME OF THE TANK ');

gotoxy(52.13); \vrite(chr(179));

gotoxy(52.12): \vrite(chr(209));

gotoxy(52,14); \vrite(chr(207));

gotoxy(53.13): readln(tankname);

found: = false;

i:=l;

repeat

if s[i,l] = tankname then found: = true

else begin

fc-i+1;
found: = false;

end.

until (i> maxtank) or (found);

capacity: = s[i.2];

degrees: = s[i.3];

for_draft: = s[i,4];

aft_draft: - s[i.5];

fframess[i.6]:

aframe: = s[i.7];

if((s[i.l]='B-14W')or(s[i.l]='B-13W'))or

((s[i.l]= 'B-10W') or (s[i,l]- 'B-9W')) then

explanations RESERVE FEED TANK'

else if

((s[i.l]='B-12W')or(s[U]='B-UW'))or

((s[i,l]= -B-7W) or (s[i,lj = 'B-8W')) then

explanations FRESH WATER TANK'

else if (s[i,l] = 'C-501J') then explanations 'DIESEL OIL TANK'

else if((s[i,l]='C-1F') or (s[i,l] ='C-6F')) then

explanations AFT SERVICE TANK'

elseif((s[i,l]='A-3F') or (s[i,l] ='A-4F')) then

explanations FWRD SERVICE TANK'

else if ((s[i.l]= A-501W) or (s[i.l]= 'A-1W')) then

explanation s FORWARD PEAK TANK'

114

elseif((s[i.l]='C-312\\") or(s[i.l] ='C-311A')) then

explanations AFTER PEAK TANK'

else explanations FUEL OIL BALLAST TANK';

if not Test_Graph_Device(GraphDriver,ErrorCode,GraphMode) then

begin

writeln(Program aborted');

Halt(l);

end

else

begin

rectangle(lS0,S0,540,220);

OutTextXY(190,S5.capacity+' tons'):

OutTextXV(510.85.degrees):

OutTextXY(460.210,for_draft +' inches');

OutTextXY(190.210.aft_draft +' inches');

OutTextX Y(340.150.s[i.l]);

rectangle(155,225,575.250);

OutTextX Y(170,230.aframe);

OutTextXY(530.230,fframe >;

OutTextX Y(290,170.explanation);

Rectangle(20,20,700.328);

FLOODFILL(25,25,15):

Readln;

CloseGraph;

end;

end

else begin

clrscr;

for j: • 1 to 3 do begin

DELAY(500):

gotoxy(35,12);

writeCNO SUCH TANK);

DELAY(500);

clrscr:

end:

115

end;

gotoxy(32.12): \vrite(' DO YOU WANT TO QUIT..? ');

gotoxy{43.14); readln(MyCh);

found: • false;

until Upcase(MyCh)= 'V;

gotoxy(20,10);

end;

end.

116

unit dm6:

[* This unit is called by unit dmS and used for fire_fighting implementation *]

interface

uses Dos,Crt,Graph,dm2;

type

fireplug = record

deck : integer:

frame : integer ;

side:integer;

location : string[30];

size_type : string[12]:

end;

var

found 1 .found2.found3:boolean:

xi.xf.yi.yfiinteger;

b:longint:

firetypexhar;

ilre_stations : array[1..37] of fireplug:

virtual_station : array [1 ..37] of fireplug;

i.j.l.k.m:integer:

dno.fno : real:

d2no.f2no : integer:

f: text;

tgxhar;

procedure fire_type;

procedure dm6_screen(k,l,deck,frame,side:integer; location:string);

procedure mybox(xi.yi.xf.yf:integer);

procedure main;

implementation

procedure fire_type:

[* draws a box for firc_typc input *]

117

var jnnteger;

hc:CHAR;

begin

delay(2000):

gotoxy(24,12); \vrite(chr(201));

for j: = 1 to 30 do \vrite(chr(205));

write(chr(lS7));

gotoxy(55,13): write(chr(186));

gotoxy(55,14); \vrite(chr(I88));

gotoxy(24,14); write(chr(200));

for j:= 1 to 30 do write(chr(205));

gotoxy(24.13); \vrite(chr(lS6)):

gotoxy(27.13): \vrite('E\'TER THE FIRETYPE);

gotoxy(51,12); write(chr(209));

gotoxy(5l.l3); write(chr(179));

gotoxy(5I.14); \vrite(chr(207));

gotoxy(27,13); writefEXTER THE FIRE TYPE');

end:

procedure dm6_screen(k.l.deck,frame,side:integer;location:string);

[* displays the closest available fire plugs locations *]

begin

gotoxy(k.l);

writeln(deck.'-',frame,'-'.side,' '.location);

end;

procedure mybox(xi.yi,xf,yf:integer);

[* draws a double window on the screen coordinates specified as

xinitial, yinitial,xfinal,yfinal *]

var j:integer;

begin

gotoxy(xi.yi); write(chr(201));

for j:= 1 to (xf-xi-1) do write(chr(205));

write(chr(187));

gotoxy(xf,yi+ I); write(chr(lS6));

gotoxy(xf,y0: write(chr(188));

118

gotoxy(xi.vf): \vrite<chr(200));

for j:= 1 to (xf-xi-1) do write(chr(205)):

gotoxy(xi.yi+ 1); write(chr(lS6));

end;

procedure main;

begin

b:= 0;

for j:= 1 to 37 do

virtual_station[j].deck: = 0;

clrscr;

i:=l:

Assign(f.Tire.txt');

reset (f);

while not eo^O do begin

with fire_stations[i] do begin

readln(f.deck.frame,side.location);

end:

fc-i+1;

end:

Close(Q:
clrscr:

fire_type:

gotoxy(52,13); read(firetype);

if ((firetype= Chr(65)) or (firetype= Chr(97))) then begin

clrscr:

dm2.dmscreen(ENTER THE DECK NUMBER/ENTER THE FRAME

\UMBER',dno,fno);

clrscr;

gotoxy(20,3); write(chr(201));

for j:= 1 to 36 do

\vrite(chr(205)); write(chr(18 7));

gotoxy(57,4);

for j:= 1 to 21 do begin

write(chr(186));

gotoxy(5 7,4 + j);

119

end:

gotoxy(57,25); write(chr(lSS)):

goto\y(20.25):write(chr(200));

for j:= 1 to 36 do

write(chr(205)):

gotoxy(20,4):

for j:= 1 to 21 do begin

\vrite(chr(lS6)):

gotoxy(20.4 + j);

end;

gotoxy(24,4); \vrite(' VALVE '):

gotoxy(40.4); write(LOCATION);

gotoxy(20.5):

for j: = 1 to 20 do begin

write(chr(199)):

for k:= 1 to 12 do vrite(chr(196));

\vrite(chr(197));

for k:= 1 to 23 do \vrite(chr(196));

vvrite(chr(182)):

gotoxy(20,j + 5);

end:

gotoxy(33,3): \vrite(chr(209));

gotoxy(33.4);

for j:= 1 to 20 do begin

\vrite(chr(179)):

j: = j+l;

gotoxy(33,j + 4);

end;

mybox(60,3,69,5);

gotoxy(60,3); write(chr(201));

for j:= 1 to 8 do write(chr(205)); write(chr(187));

gotoxy(69,4); write(chr(186));

gotoxy(69.5); write(chr(188));

gotoxy(60,5); \vrite(chr(200));

120

for j:= 1 to 8 do \vrite(chr(205));

gotoxy(60,4); \vritc(chr(lS6));

d2no: = Trunc(dno);

f2no: = Trunc(fno):

foundl: = false;

found2: = false;

found3: = false;

if dno = 5 then begin

if((fno< =92)and(fno> = 72)) then begin

1: = 6;

for j:= 1 to 3 do begin

with fire_stations[j] do begin

foundl: = true;

found2: = true;

found3: = true;

dm6_screen{24.1.deck.frame.side,location);

l: = l + 2;

end;

end;

for j: = 28 to 29 do begin

with fire_stations[j] do begin

dm6_screen(24,l,deck. frame, sidejocation);

L—1+2;

end;

end;

end;

if ((fno< = 110) and (fno> =93)) then begin

1: = 6;

foundl: = true;

found2: = found 1;

found3: = found2;

for j: = 4 to 6 do begin

with fire_stations[j] do begin

dm6_screen(24,l,deck,frame,side,location);

121

k-1+2;
end;

end;

for j: = 30 to 31 do begin

with fire_stations[j] do begin

dm6_screen(24.1.deck,frame,side,location);

l: = l+2;

end;

end;

end;

if ((fno< 130) and (fno> 110)) then begin

1: = 6;

found 1:• true;

found2: = true:

found3: = true;

for j: = 7 to 9 do begin

with fire_stations[j] do begin

dm6_screen(24,l,deck,frame.side,location);

l: = l + 2;

end;

end;

for j:= 30 to 34 do begin

with fire_stations[j] do begin

dm6_screen(24.1, deck, frame, side,location);

l: = l + 2;

end;

end;

end;

if ((fno< = 148) and (fno> = 130)) then begin

1: = 6;

foundl: = true;

found2: = true;

found3: = true;

for j:=10to 13 do

122

begin

with fire_stations[j] do begin

dm6_screen(24.1,deck.frame.side.location);

l: = l+2:

end;

end;

for j:= 30 to 34 do begin

with fire_stations[j] do begin

dm6_screen(24.1,deck,frame,side,location);

l: = l+2;

end:

end:

end:

end

else begin

for j:» 1 to 37 do begin

if abs(fire_stations[j]-frame - fno) < = 13 then

virtual_station[j]: = fire_stations[j];

end:

end:

1: = 6;

for j:= 1 to 37 do begin

if virtual_station[j].deck < > 0 then begin

with virtual_station[j] do begin

dm6_screen(24,l.deck,frame.side,location);

l: = l+2:

end;

end;

end;

gotoxy(33,4);

for j:= 1 to 20 do begin

write(chr(179));

j: = j+l;

gotoxy(33.j + 4);

end;

123

gotoxy(33.24); \vrite(chr(179));

gotoxy<33.25); write(chr(207));

repeat

if (fno < = 72) then begin

gotoxy(28,l);writc(' FORWARD REPAIR TEAM');

delay{490);

gotoxy{28,l);write(' STOP VENTILATION ');

delay(500);

end;

if ((fno > 72) and (fno< = 148)) then begin

gotoxy(2S,l); writef MIDSHIP REPAIR TEAM'):

DELAY(490);

gotoxy(28.1); write(' STOP VENTILATION ');

delay(500);

end;

if fno > 14S then begin

gotoxy(28.1); writeC AFTER REPAIR TEAM');

DELAY(490);

gotoxy(28,l); writeC STOP VENTILATION ');

delay(500);

end;

b: = b+l;

gotoxy(64,4): write(b);

mybox(60,7,7;.9); gotoxy(61,8);

writeC COMLINE 2JZ):

until KeyPressed;

clrscr;

tg:-#3;
mybox(32,11,50,13);

gotoxy(35,I2);

write(SCORE = = = > \b);

delay(3000);

end

else if ((firctype=chr(66)) or (firetype = chr(98))) then begin

124

b: = 0:

repeat

clrscr;

delay(500):

mybox(23,7.59.9);

gotoxy(24.S);

writelnC DO NOT USE WATER ');

DELAY(IOOO);

mybox(23,10,59,12);

gotoxy(2-J,ll);

writelnC C02 OR DRY CHEMICAL AGENTS');

delay(lOOO);

mybox(23.13.60.15);

gotoxy(24,14);

WRITELNC CUT OFF LIGHTING CIRCUIT BREAKERS');

delay(lOOO);

mybox(23.16.60,18); gotoxy(24.17);

writeC COMMUNICATION LINE IS = = > 2JZ');

DEF AY(IOOO);

b:- c + 5:

mybox(35,19,45,21);

gotoxy(39.20);

write(b):

delay(500);

until KeyPressed;

end

else if firetype = ??116 then begin

writelnC NO SUCH FIRETYPE');

delay(500);

clrscr;

end;

end;

end.

125

unit dm8:

[* this unit is the main part of the damage control part.This unit calls

all other units.It is also called by outmenu.pas turbo pascal unit

and executed when user selects option 3 in the main menu. •]

interface

uses Crt.dml,dm2,dmb3,dmf3,dmw3,dm6,dm5;

var

i,j.k:integer:

cl.c2.c3.c4,c5,c6,c7,c8:boolean;

bc,tc:integer;

Chxhar:

currenti: integer;

procedure bir(i:integer: var j:integer ;

bc.tc: integer ; var currenti : boolean):

procedure iki(i:integer; var j:integer ;

bc.tc: integer ; var current2 : boolean);

procedure uc(i: integer; var j:integer;

bc.tc : integer; var current3 : boolean);

procedure dort(i:integer; var j:integer;

bc.tc : integer; var current4: boolean);

procedure bes(i: integer; var j:integer;

bc.tc : integer; var current5:boolean);

procedure alti{i:integer; var j:integer;

bc.tc : integer: var current6: boolean);

procedure yedi(i: integer; var j : integer;

bc.tc : integer; var current7:boolean);

procedure sekiz(i:integer; var j: integer;

bc.tc : integer; var current8: boolean);

procedure mscreen(current 1 .current2,current3.current4,current5,current6,

current7,current8 : boolean;

var j: integer; var k:integer);

procedure box2(xb,yb.xe,ye:integer);

procedure main;

implementation

procedure bir(i: integer; var j: integer; bc.tc : integer;

126

var current 1 : boolean);

[*]., cedures bir through sekiz are called by procedure mscreen

and used to determine which option should be highlighted in

the wrap-around & pull-down menu implementation *]

begin

i: = 30;j:= 10:

if current 1 then begin

be: = 7; tc: = 0;

end

else begin

be: = 0; tc: = 7;

end:

TextBackGround(bc); TextCoior(tc);

gotoxy(i.j): write('l. SHIP GENERAL INFO ');

end:

procedure iki(i:integer; var j:integer ;

bc,tc:integer: var current2 : boolean);

begin

i: = 30;j:= 11:

if current2 then begin

he: = 7; tc: = 0 ;

end

else begin

bc: = 0; tc: = 7;

end;

TextBackGround(bc); Textcolor(tc);

gotoxy(ij); write('2. DRAFT DIAGRAM ');

end;

procedure uc(i:integer; var j:integer ;

bc.tc: integer; var current3:boolean);

begin

i:= 30; j: = 12;

if current3 then begin

be: = 7; tc: = 0;

end

127

else begin

be: = 0; tc: = 7;

end;

TextBackGround(bc); TextColor(tc);

gotoxy(ij); \vrite('3. SHOW BALLAST TANKS ');

end;

procedure dort(i:integer; var j:integer,

bc,tc:integer ; var current4: boolean);

begin

i: = 30;j:= 13;

if current4 then begin

be: = 7; tc: = 0 ;

end

else begin

be: = 0; tc: = 7 ;

end;

TextBackGround(bc); TextColor(tc);

gotoxy(i.j);\vrite('4. SHOW FUEL TANKS');

end;

procedure bes(i:integer; var j:integer;

bc.tc:integer; var current5:boolean):

begin

i: = 30; j: = 14;

if currents then begin

be: = 7; tc: = 0:

end

else begin

be: = 0; tc: = 7;

end;

TextBackGround(bc); Textcolor(tc);

gotoxy(i,j); write('5. SHOW WATER TANKS');

end; procedure alti(i:integer; var j:integer; bc.teinteger; var current6:boolean); var

cunt:integer;

begin

i: = 30;j:=15;

12S

if currentö then begin

be: = 7; tc: = 0; cunt: = cunt + 1;

end

else begin

be: = 0: tc: = 7;

end:

TextBackGround(bc); Textcolor(tc);

gotoxy{i,j); write('6. FIRE FIGHTING EXERCISE ');

if cunt mod 3 <> 0 then write('CO\'FIRM ');

end;

procedure yedi (i: integer; var j : integer;

bc,tc:integer; var current7:boolean);

begin

i: = 30;j: = 16:

if current7 then begin

be: = 7; tc: = 0;

end

else begin

be: = 0; tc: - 7;

end:

TextBackGround(bc); Textcolor(tc);

gotoxy(ij); \vrite(7. LIQUID LOADING DIAGRAM);

end:

procedure sekiz(i:integer; var j:integer;

bc.tc:integer; var current8:boolean):

begin

i: = 30; j: = 17;

if currents then begin

be: = 7; tc: = 0;

end

else begin

be: = 0; tc: = 7;

end;

TextßackGround(bc); Textcolor(tc);

goioxy(i,j); \vrite('S. EXIT THIS PROGRAM ');

129

end;

procedure mscreen(current 1 ,current2,currents,current4.currents,

current6.current7.currentS : boolean;

var j: integer; var k: integer);

[* this procedure calls previous ones bir through sekiz by turn

and handles the pull-down & wrap-around type menu *]

begin

bir(i.j ,bc,tc.current 1);

iki(i,j,bc.tc,current2);

uc(i,j,bc,tc,current3);

dort(i,j,bc.tc,current4);

bes(i.j,bc,tc,current5);

alti(i.j,bc.tc,current6);

yedi(i,j,bc.tc.current7);

sekiz(i,j.bc,tc,currentS);

if currentl then k:= 10;

if current2 then k:— 11;

if currents then k: = 12;

if current4 then k:= 13;

if current5 then k:= 14;

if currentö then k: = 15;

if current7 then k:= 16;

if currents then k: = 17;

end:

procedure box2(xb,yb.xe,ye:integer):

[* draws a single window on the screen coordinates specified as

xbeginning,ybeginning,xend,yend. *]

var j:integer;

begin

gotoxy(xb.yb); write(chr(218));

for j:= 1 to xe-1 do write(chr(196)); write(chr(191));

gotoxy(xe+ l,yb+ 1);

for j: = 1 to ye do begin

write(chr(179));

gotoxy(xe+ l,yb + j);

130

end:

gotoxy(xb,yb + 1):

for j:= 1 to ye-1 do begin

write! chr(179)):

gotoxy(xb,yb + j);

end;

gotoxy(xb,ye): write(chr(192));

for j:= 1 to xe-1 do \vrite{chr(196));

\vrite(chr(217));

end;

procedure main;

begin

repeat

dm6.mybox(20,20,60.22);

gotoxy(30,21): writc(' USE ' + CHR(24) + ' AND ' +CHR(25) +' ARROWS');

clrscr:

cl: = true; c2:= false; c3: = false;c4: = false;c5:=:false;c6: = false;c7: = false;

c8: = false;

j:=10;

repeat

box2{ 1,1,78,24);

gotoxy(2S,5): write(' DAMAGE CONTROL CENTER');

gotoxy(26,6);

for j:= 1 to 29 do \vrite(chr(196));

dm6.mybox(20,20.60.22):

gotoxy(30.21); writeC USE ' + chr(24)+ ' AND ' + chr(25) +'ARROWS');

mscreen(c 1 ,c2,c3,c4,c5,c6,c7,c8,j.k);

Ch:= ReadKey;

ifCh = £S0then

k: = k+l;

if Ch = U12 then

k: = k-l:

if k= 18 then begin k:= 10; j:= 10; end;

if k = 9 then begin k: = 17; j: = 17; end;

if ((k= 10) OR (ch-#49)) then begin

131

cl: = true: c2: = false; c3: = false: c4: = false;

c5: = false; c6: = false; c7: = false: cS: = false;

mscreen(cl.c2.c3.c4.c5.c6.c~,c8.j.k):

end;

if <(k= 11) or (Ch= #50)) then begin

c2: = true; cl: = false; c3: = false; c4: = false;

c5: = false; c6: = false; c7: = false; cS: = false;

mscreen(cl,c2,c3,c4,c5.c6,c7.cS,j,k);

end;

if((k=12) or(Ch = #51)) then begin

c3; = true; c 1: = false; c2: = false; c4: = false;

c5: = false; c6: = false; c~: = false; cS: = false:

mscreen(cl.c2.c3.c4,c5,c6.c7.cS.j.k);

end:

if((k= 13) or (Ch = =52)) then begin

c4: = true: cl: = false; c2: = false; c5: = false;

c3: = false; c6: = false; c7: = false; cS: = false;

mscreen(cl.c2,c3.c4.c5.c6.c7.cS.j.k);

end:

if((k= 14) or(Ch«#53)) then begin

c5: = true: cl: = false; c2: = false: c3: = false;

c4: = false; c6: = false: c7: = false; cS: = false;
mscreen(cl,c2,c3,c4,c5,c6,c7.cS,j.k):

end;

if((k=15) or (Ch-#54)) then begin

c6: = true; cl: = false; c3: = false; c4: = false;

c5: = false: c2: = false; c7: = false; c8: = false;

mscreen(cl,c2,c3,c4,c5,c6.c7,c8.j,k);

end;

if ((k= 16) or (Ch = £55)) then begin

c7: = true; cl: = false; c2: = false; c3: = false; c4: = false;

c5: = false; c6: = false; c8: = false;

mscreen(cl,c2,c3,c4,c5,c6,c7,c8,j.k);

end;

if «k= 17) or (Ch= «56)) then begin

132

cS: = true; cl:= false: c2: = false; c3: = false;

c4: = false; c5: = false: c6: = false: c7: = false:

Te\tBackGround(0):

TextColor(7);

end:

until Ch = «13:

clrscr;

gotoxy(i,j);

if k= 10 then dml.main;

if k= 11 then dm2.main;

if k= 12 then dmb3.main;

if k= 13 then dmß.main:

if k= 14 then dm\v3.main;

if k= 15 then dmö.main:

if k= 16 then dmS.main;

until k« 17;

goto.\y(20,20);

end;

end.

133

unit dmb3;

[* this unit is called by unit dmS and used to draw the fuel oil

ballast tanks of the ship in the graphics mode *]

interface

uses Graph,Dos,TestGr;

const

C501 : array[1..5] of PointType = ((x:45; y:134),

(x:96;y:134),

(x:96;y:166),

(x:45;y:166).

(x:45;y:134));

C12JOJ_J_2 : array[1..5] of PointType = ((x:10; y:125).

(x:130:y:104),

(x:130:y:134),

(x:10; y:134),

(x:10; y:125));

Cll_9_7_5_3 : array[1..5] of PointType = ((x:10; y:166),

(x:130:y:166),

(x:130;y:196),

(x:10; y:175),

(x:10; y:166)):

BBS : array[1..5] of PointType = ((x:275; y:100),

(x:306; y: 101),

(x:306:y:199),

(x:275: y:200),

(x:275:y:100));

A510_508 : array[1..5] of PointType = ((x:456; y: 111),

(x:509;y:116),

(x:509;y:137),

(x:456;y:137),

(x:456;y:lll));

A509_507 : array[1..5] of PointType = ((x:456; y:166),

(x:509;y:166),

(x:509;y:184),

134

(x:456:y:lS9),

(x:456:y:166));

A506_505 : array[1..5] of PointType = ((x:509; y:125),

(x:559; y:129),

(x:559;y:171).

(x:509;y:175),

(x:509:y:125));

LoadingShip : array L 1..46] of PointType = ((x:10 ; y: 125),

x:45;y:113),

x:96 ; y:l08),

x:114:y:105),

x:130;y:104).

.130; y: 102),

x:19S;y:101),
x:236:y:100);

x:275; y:100);

x:27S;y:100);

x:306;y:101):

x:374: y: 103):

x:412:y:106);

x:453:y:109);

x:453:y:lll);

x:456; y: 113).

x:475;y:113),

x:509;y:116),

x:509;y:125),

x:554, y:129),

x:682, y:I45),
x:690;y:147),

x:695; y:150),

x:690;y:153),

x:682; y:155),

x:554;y:171),

x:509; y:175),

135

x:509;y:lS4),

x:475; y:187),

x:456;y:187),

x:453;y:189),

x:453;y:19l),

x:412;y:194).

x:374;y:197),

x:306; y: 199),

x:278; y:200),

x:275; y:200),

x:236; y:200),

x:19S;y:199).

x: 130; y: 198),

x:130;y:196),

x:114;y:195),

x:96; y:192),

x:45; y:lS7),

x:10; y:175),

x:10; y:125));

procedure main;

implementation

procedure main;

begin

if not Test_Graph_Device(GraphDriver,ErrorCode,GraphMode) then

begin

writeln(Program aborted');

Halt(l);

end

else

begin

DrawPoly(SizeOf(LoadingShip) div SizeOf(PointType),LoadingShip);

Line(10,134,130,134):

Line(10,166,130,166);

136

Line{45.113,45.187);

Linc(96,10S.96.192);

Hne(114,105,114.195);

Line(130.102,130,19S);

Line(19S,101,198,199);

Line(236,100,236,U5);

Line(236,l 85,236,200);

Line(275,100,275,200);

Line(278.100,278.200);

Line(306,101,306,199);

Line(278,131,306,131);

Line(27S,16S,306,16S):

Line(374,103.374,197);

Line(412,106,412,119);

Line(412,lSl,412.194):

Line(453.109,453,191);

Line(456,lll,456,lS9);

Line(479.113,479,187);

Line(509,116.509,184);

Line(559,129,559,171);

line(678.I45,67S,155);

Line(690.147,690,153);

Line(695.148.695,152);

Line(19S,l 15,275,115);

Line(198,185.275,185):

Line(374,l 16,453,122);

Line(374,184,453,178);

Line(456,137,509,137);

Line(456,166,509,166);

Line(509,159,524,159);

Line(524,159,524,150);

Line(524,150,559,150);

OutTextX Y(390,150,'B-1-1);

OutTextX Y(220,150.B-3-1');

OutTextXY(320,150,'B-2');

137

OutTextX Yd 50,150/B-4):

OutTextXY(550,175,'4S);

OutTcxtXY(504.188/60):

OutTextXY(44S. 196/72'):

OutTextXY(370,204,Chr(57) + Chr(50) + Chr(171));

OutTextXY(270,205,'110');

OutTextX Y(193,204/130);

OutTextXY(125,203/148');

OutTextX Y(91,197/157');

OutTextXY(40,192/170');

OutTextXY(5,180,T82');

SetfillStyle(4.0):

FillPoly(SizeOf(C12_ 10_8_4_2) div SizeOfIPointType),C 12_ 10_8_4_2);

FillPoly(SizeOf(Cl 1_9_7_5_3) div SizeOflPointType),Cl 1_9_7_5_3):

FillPoly(SizeOf(BBS) div SizeOflPointType),BBS);

FillPoly(SizeOfIA510_508) div SizeOf(PointType),A510_508);

FillPoly(SizeOiLA509_507) div SizeOfl;PointType),A509_507);

FillPoly(SizeOf(A506_505) div SizeOf{PointType),A506_505);

SetFillStyle(7.0);

Fillpoly(SizeORC501) div SizeOfl;PointType),C501);

Line(10.134,130,134); [aft ballast tanks separator]

Lined 0.166.130.166);

Line{45.113,45,187):

Line(96,10S,96.192);

Lined 14,105,114,195);

Lined 30,102,130.19S);
Line(278,100,278,200); [Mid ballast tanks separator]

Line(306,101,306,199);

Line(278,131,306,131);

Line(27S,168,306,168);

Line(456,l 11,456,191); [Fonv. ballast tanks separator]

Line(475,113,475,187);

Line(509,l 16,509,184);

Line(456,l 11.509,116);

Line(456.166,509,166);

138

Line(509,159,524.159);

Line(524,159.524.150):

Line(524,150,554,150):

SetTe\tStyle(1,0,3);

SetTextJustify(CenterText.CenterText);

OutTextXY(320 , 250.TCG M.F.CAKMAK D351');

Outrex;XY(300,2S0,Cvy\rIGURATIONAL PLAN , FUEL OIL BALLAST

TANKS');

Readln;

end;

CloseGraph:

end;

end.

139

unit dniß;

[* this unit is called by unit dmS and used to draw the fuel oil

service tanks of the ship in the graphics mode *]

interface

uses Graph.Dos.TestGr;

const *

A34F : array[1..5 of PointType = ((x:456; y:137),

(x:509;y:137),

(x:509;y:166),

(x:456; y:166),

(x:456;y:137));

C16F : array[1..5] of PointType - ((x:96; y:134),

(x:130;y.l34),

(x: 130; y. 166),

(x:96;y:166),

(x:96;y:134));

LoadingShip : array [1..46] of PointType = ((x:10 ; y:125), «

{ x:45;y:113).

(x:96;y:10S),

(x:114; y: 105).

(x:130;y:104),

(x:130;y:102),
(x:198;y:I0I),

(x:236;y:100)?

(x:275;y:100),

(x:278; y:100),

(x:306;y:101),

(x:374;y:103),

(x:412;y:106),

(x:453;y:109),

(x:453;y:lll),

(x:456;y:113), •

(x:475;y.T13),

(x:509;y:116), -

140

; x:509;y:125).

[x:554;y:129),

[x:6S2; y:145),

x:690;y:147).

' x:695;y:150),

; x:690;y:153),

; x:6S2;y:155),

; x:554;y:171),

' x:509; y:175),

x:509;y:184),

; x:475;y:187),

x:456;y:187),

[x:453;y:189),

(x:453: y:191),

' x:412;y:194).

x:374; y: 197),

[x:306;y:199),

; x:278; y:200).

[x:275; y:200),

x:236; y:200),

' x:198;y:199),

x:130;y:19S),

: x:130;y:196).

x:114;y:195),

' x:96; y:192),

(x:45; y:187),

; x:10; y:175),

; x:10; y:I25»;

procedure main;

implementation

procedure main;

begin

ii not Test_Graph_Device(GraphDriver,ErrorCode,GraphMode) then

beszin

141

writeln('Program aborted');

Halt(l);

end

else

begin

DrawPoly(SizeOflLoadingShip) div SizeOf(PointType),LoadingShip);

Line(10,134,130,134);

Line(10.166,130,166);

Line(45,l 13,45,187);

Line(96,108,96,192);

line(l 14,105,114,195):

Line(130.102,130,19S);

Line(198,101,198.199)

Line(236.100.236,115)

Line(236,185,236,200)

Line(275,100,275.200)

Line(27S,100,278,200)

Line(306,101.306.199)

Line(278.131.306.131)

Line(278.168.306.16S)

Line(374,103.374.197)

Line(412,106.412,119)

Line(412,lS1.412.194)

Line(453.109,453,191)

Line(456,l 11.456.189)

Line(479,l 13.479,187)

Line(509,116,509,184)

Line(559,129,559,171);

line(678,145,678,155);

Line(690,I47,690,153);

Line(695,148,695,152)

Line(198,115,275,115)

Line(198,185,275,185)

Line(374,l 16,453,122)

Line(374,184,453,178)

142

Line(456,137.509,137);

Line(456,166,509.166);

Line(509.159,52-4,159);

Line(524.159.524,150):

Line(524,150,559,150);

OutTextXY(390,150.'B-l-l');

OutTextX Y(220,150/B-3-1');

OutTextXY(320,150,'B-2);

OutTextX Y(150,150, B-4);

OutTextXY(550,175,'4S');

OutTextXY(504.1S8,'60');

OutTextXY(44S.196,'72);

OutTextX Y(370,204,Chr(57) + Chr(50) + Chr(171));

OutTextXY(270,205,'110):

OutTextX Y(193,204,' 130);

OutTextXY(125.203.' 148');

OutTextXY(91,197,'157);

OutTextXY(40.192.170):

OutTextXY(5,180,'182);

SetnllStyle(2,0);

FillPoly(SizeOf(A34F) div SizeORPointType),A34F);

FillPoly(SizeOflC16F) div SizeOf^PointType),C16F);

Line(479,137,479.166);

Lined 14,134,114,166);

SetTextStyle(1,0,3);

SetTextJustify(CenterText,CenterText);

OutTextXY(320 , 250,'TCG M.F.CAKMAK D351');

OutTextXY(300,2S0,'CONFIGURATIONAL PLAN , FUEL OIL SERVICE

TANKS');

Readln;

end;

CloseGraph;

end;

end.

143

unit dm\v3;

[* this unit is called by unit dmS and draws the feed and potable

water tanks of the ship in the graphics mode *]

interface

uses Graph,Dos,TestGr;

const

Potable_Rectangle : array[1..5] of PointType = ((x:20; y:40),

(x:60; y:40),

(x:60; y:60),

(x:20; y:60),

(x:20; y:40));

B7W : array[1..5] of PointType = ((x:412; y:181),

(x:453;y:17S).

(x:453;y:191),

(x:412; y:194),

(x:412;y:lSD);

B8W : array[1..5] of PointType - ((x:412; y:106),

(x:453;y:109),

(x:453;y:122),

(x:412;y:119),

(x:412;y:106));

B11W : array[1..5] of PointType = ((x:236; y:185),

(x:275; y:185),

(x:275; y:200),

(x:236; y:200),

(x:236;y:185));

B12W : array[1..5] of PointType = ((x:236; y:100),

(x:275;y:100),

(x:275;y:115),

(x:236;y:115),

(x:236;y:100));

LoadingShip : array [1..46] of PointType = ((x:10 ; y:125),

(x:45;y:113),

144

(x:96 ; y:lOS),

(x:453;y:191),

(x:114 y:105),

(x:130 >:104),

(x:130 v: 102),

(x:198 y:101),

(x:236 y:100),

(x:275 v:100),

(x:278 y:100).

(x:306 y.ioi),
(x:374 y:103),

(x:412 v:106),

(x:453 y:109),

(x:453 y:iii),
(x:456 y:113),

(x:475 y:113),
(x:509 y:116),

(x:509 y:125),

(x:554 y:129),

(x:682 v:145),

(x:690 y:147),

(x:695 v:150),

(x:690 y:153),

(x:682 y:155),

(x:554 y:171),

(x:509 y:175),

(x:509 >:184),

(x:475 y-187),

(x:456 y:187).

(x:453 v:189),

(x:412;y:194),

(x:374; y:197),

(x:306;y:199),

(x:278; y:200),

(x:275 v:200),

145

(x:45; y: 187),

x:236; y:200),

x: 198; y: 199),

x:130;y:19S),

x:130;y:196).

x:114;y:195),

x:96; y:192),

x:10; y:175),

x:10; y:125));

procedure main;

implementation

procedure main;

begin

if not Test_Graph_Device(GraphDriver,ErrorCode,GraphMode) then

begin

vriteln('Program aborted');

Halt(l);

end

else

begin

DrawPoly(SizeOflLoadingShip) div SizeOf{PointType),LoadingShip);

Line(10.134.130,134);

Line(10.166,130.166);

Line(45,l 13.45,187);

Line(96.108,96,192);

line(114,105,114.195);

Line(130,102,130,198);

Line(198,101.198,199)

Line(236,100,236.115)

Line(236,185,236.200)

Line(275,100.275.200)

Line(278,100,278,200)

Line(306,101,306,199)

Line(27S. 131.306,131)

Line(278.168.306.168)

146

Line(374,103.374.197);

Line(412,106.412.119);

Line(412,181,412,194);

Line(453,l 09,453,191);

Line(456,lll,456,lS9);

Line(479,113,479,1S7);

Line(509,116,509,184);

Line(559,129.559,171);

line(678,145,67S,155);

Line(690,147,690,153);

Line(695,148,695,152);

Line(198,115.275.115):

Line(198,lS5,275.185):

Line(374,116.453,122);

Line<374,184.453,178);

Line(456.137,509,137);

Line{456.166.509.166);

Line(509.159.524,159):

Line(524,159.524.150);

Line(524,150,559.150);

OutTextX Y(390,150,'B-1 -1');

OutTextXY(220.150, 'B-3-1'):

OutTextXY(320,150,'B-2'):

OutTextXY(150.150/B-4);

OutTextXY(550.175,'48');

OutTextXY(504.188,'60);

OutTextXY(448,196,'72');

OutTextXY(370,204,Chr(57) + Chr(50) + Chr(171));

OutTextXY(270,205,110);

OutTextXY(193,204,130);

OutTextXY(125.203,148);

OutTextX Y(91,197,'157);

OutTextXY(40,192,170);

OutTextXY(5,180,182):

Rectangle(20,10.60,30);

147

FloodFill(25.25,14):

OutTextXY(70.20,'FEED WATER);

Floodfill(210.112,14);

Floodmi(210,190.14):

Floodfill(380,l 10.14);

Floodfill(3S0,190,14);

SetfillStyle(10,0);

FillPoly(SizeOflBSW) div SizeOf{PointType).BSW);

FillPoly(SizeOfIB7W) div SizeOfTPointType),B7W);

FillPoly(SizeOflBllW) div SizeOivPointType),BllW);

FillPoly(SizeOf{B12W) div SizeOfTPointType).B12W);

FillPoly(SizeOI{ Potable.Rectangle) div SizeOfiPointType).

Potable_Rectangle);

OmTextXY(70,50,'POTABLE WATER);

OutTextXY(435,95.'B-SW):

OutTextXY(375.90,'B-10W);

OutTextXY(245.90,'B-12 W);

OutTextXY(190.90/B- 14W);

SetTextStyle(1,0.3);

SetTextJustify(CenterText.CenterText);

OutTextXY(320 . 250,'TCG M.F.CAKMAK D351);

OutTextXY(300.2S0, CONFIGURATIOXAL PLAN , WATER TANKS');

Readln:

end;

CloseGraph:

end;

end.

148

fire_stations data file

[* This data file is used by unit dmö.tpu *]

5 74 2 B-l-1 FWD FIRE ROOM

5 81 0 B-l-1 FWD FIRE ROOM

5 S2 0 B-l-1 FWD FIRE ROOM

5 94 0 B-2 FWD ENGINEROOM

5 103 0 B-2 FWD ENGINEROOM

5 108 0 B-2 FWD ENGINEROOM

5 114 0 B-3-1 AFT FIREROOM

5 117 1 B-3-1 AFT FIREROOM

5 117 3 B-3-1 AFT FIREROOM

5 140 1 B-4 AFT ENGINEROOM

5 140 3 B-4 AFT ENGINEROOM

5 141 0 B-4 AFT ENGINEROOM

5 142 0 B-4 AFT ENGINEROOM

3 4S 1 A-305L CREW'S QUARTERS

2 18 0 A-203LM CPO MESSROOM

2 40 0 A-204-2L PASSAGE

2 69 2 A-208L FOOD SERVICE

2 71 0 A-207L PASSAGE

2 169 0 C-203L CREW QUARTERS

2 170 0 C-204LM CREW QUARTERS

2 195 0 C-205L CREW QUARTERS

1 19 0 WEATHER

1 41 0 WEATHER

1 41 2 WEATHER

1 41 4 WEATHER

1 41 6 WEATHER

1 41 8 WEATHER

1 69 0 WEATHER

1 80 0 WEATHER

1 100 0 WEATHER

1 118 0 WEATHER

1 141 1 WEATHER

1 141 2 WEATHER

149

1 147 0 B-104ACEL PASSAGE

1 171 1 WEATHER

1 171 2 WEATHER

1 171 4 WEATHER

150

V. CONCLUSIONS AND RECOMMENDATIONS

This Chapter presents the conclusions, recommendations and the future software

implementations.

A. CONCLUSIONS

A local area network will greatly increase the efficiency and functionality of Turkish

Battleships. A local area network is a cost-effective multiuser system. The personal

computers in the local area network do not occupy much space in the battleship; neither

do they require special air conditioning. The programs, data and resources can be

shared among the users. This feature of the local area network also reduces the marginal

cost of the software and the peripheral devices.

Although the computers in the local area network can be based on any Intel family

microprocessors, having Intel 80386-type microprocessors will increase efficiency and

accuracy while decreasing response time. The price difference between the 80286 and the

S03S6 is not great. This fact has prompted us to employ Intel 80386 microprocessors.

This thesis has mainly concentrated on creating an application software library for

Turkish Battleships. The three application software package has already been imple-

mented in this thesis. This package will meet some of the most important software re-

quirements of Turkish Battleships. The effort for creating the military oriented software

packages will continue.

The Turbo Pascal 4.0 was employed in the implementation of the software package.

We were planning to employ Ada in the beginning, but the available Ada compilers did

not support graphic capabilities at all. This consideration led us to employ Turbo Pascal

4.0. The software package created for Turkish Battleships can also run on stand-alone

computers. This allows users to run the programs even when they do not have multiuser

network environment on a small battleship. This feature also permits programs to be

run in educational centers for training purposes. The major hardware requirement of the

programs is an IBM or equivalent based computer (or computers in a multiuser network

environment). We have implemented both monochrome and EGA monitor versions of

the package. In order to succesfully run the programs, the computers should have he

following files:

1. Dos.doc,

151

2. Crt.doc,

3. Graph.doc,

4. Fire.txt,

5. MFCakmak.exe,

6. Trip.chr,

7. Hercules.bgi for monochrome monitors or Egavga.bgi for EGA monitors.

Although almost every network software provides password operated sign on, in

order to assure security we also provided a second step password in our implementation.

The LAN is also one of the best solutions to the hardware security problems. As long

as the server does not have a hardware problem, the entire system will not be affected

by the users hardware problems.

B. RECOMMENDATIONS AND FUTURE IMPLEMENTATIONS

The software requirements of the navy and the battleships are quite numerous.

Turkish Navy should continue to implement other software requirements. The Turkish

Navy should also organize a Software Development, Research and Coordination Branch

under the command of the Technical Department. This branch should plan, organize,

develop, test and control the future software implementations. The Turkish Navy al-

ready has the required man-power for this Software Development, Research and Coor-

dination Branch. The following features should be implemented and combined in TCG.

MF. Cakmak in the near future:

1. Mouse capability in CIC and tank diagrams,

2. Getting CIC target data and draft values from the electromechanic sensors,

3. Supply Office COSAL manager program should be implemented,

4. Electrical Configuration of the ship should be implemented,

5. Trouble shouting can easily be implemented,

6. Turkish character set and word processing should be combined [Ref. 6],

7. Tank sound control should be implemented,

8. Computer aided navigation should be advanced,

9. The computer aided missile path design should be implemented.

The users of programs created for Turkish Battleships will not be computer scien-

tists, nor progranjners. The Turkish Navy should also organize short term courses to

teach computer operators how to run the computer programs.

152

REFERENCES

1. Bern-. Paul, Operating the IBM PC Networks, Sybex, San Francisco, CA, 19S5.

2. Stallines, William. Data and Computer Communications, 2nd. edition, Macmillan
Publishing Co. NY, 1988.

3. Deitel, Harvev, An Introduction to Operating Systems, Boston College, MA, Julv
19S4.

4. Intel Corporation, 80386 Reference Manual, Intel, Santa Clara, CA, 1987.

5. Berzins. Valdis, Software Engineering, class notes for CS 4500 at the Naval Post-
graduate School, Monterey, CA, October 1988.

6. Akinci. Metin. Turkish Character Set Generator Implementation, Master's Thesis,
Naval Postgraduate School. Monterey, CA, June 1988.

153

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Uno Kodres, Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterev. CA 93943-5000

No. Copies

2

5. Tarik Gokasan
Vapi ve Kredi Bankasi
Balat Subesi
Istanbul TURKEY

1

i

6. Nevzat Gulesen
Yavuz Selim Cad. Silistre Sok. 27 3
Fatih - Istanbul . TURKEY

2

7. Genel Kurmay Baskanligi
Personel Dairesi ve
AR-GE Baskanliei
Bakanliklar - Ankara ,' TURKEY

2

S. Kara Kuvvetleri Komutanligi
Personel Daire Baskanligi,
Topculuk Subesi ve
Silah Sistemleri Muhendisligi Subesi
Bakanliklar - Ankara / TURKEY

3

9. Topcu ve Fuze Okulu
Oaretim Kurulu AR-GE Subesi
Polatli - Ankara / TURKEY

1

10. Kara Harp Okulu Komutanligi
Okul Kutuphanesi ve
Elektrik Bolumu Kutuphanesi
Bakanliklar - Ankara TURKEY

154

2

•

•
J

11. Deniz Harp Okulu Komutanligi
Okul Kutuphanesi ve
Elektrik Bolumu Kutuphanesi
Tuzla - Istanbul TURKEY

12. Fakulte ve Yuksek Okullar Komutanligi
Kutuphanesi
Dikimevi - Ankara / TURKEY

13. Fakulte ve Yuksek Okullar Komutanligi
Kutuphanesi
Cankurtaran - Istanbul, TURKEY

14. Bogazici Universitesi
Elektrik Fakultesi
Istanbul TURKEY

15. Ortadogu Teknik Universitesi
Elektrik Fakultesi
Ankara TURKEY

155

